Some Thoughts on a

Karl Lunt
7349 W. Canterbury
Peoria, AZ 85345 (602)-878-0305

My newest computer is a 68010 board I purchased surplus for $40.
One of the first things a user of such a surplus board must do is to
rewrite the original ROMs so the board will do something useful
for its new owner. That means designing and writing a new ROM
monitor.

I had already written several ROM monitors for my 6809 systems
and leamed several things that I wanted to change in the 68xxx
monitor I was preparing (o write.

The new ROM had 1o support a string output routine much more
sophisticated than the PSTRING utility normally found in the 6809
monitors. Specifically, I wanted the string utility 1o support
multiple arguments and formatted hex/decimal output.

The monitor he-fly chang, primitive input
and output routines. This was yio of the two

68xxx ROM Monitor

The 680x0 code for the monitor was developed on a PC/XT
compatible running the 2500 A.D. 68000 cross assembler and
linker system. 1 used Sidekick as my text editor, principally
because it s fast, RAM-based and [already knew how to use it. In
the early stages of development, I had to burn different versions of
the monitor into ROM, install the ROMs in the board, try the
software, then repeat the cycle as necessary. The current version
of the ROM supports downloading of S19 records, considerably
casing the development of new software or monitor extensions. 1
have been using Crosstalk to communicate between the host PC
and the target 68010 system, but just about any good PC public-
domain modem program should work fine.

‘The first order of business is the formatted string output routine,
PRINTF. The code for this routine can be found in the book
“68000 Assembly Language,” by Stanley and Krantz (published
by Addison- Wesley). This book is an absolute gold-mine of

serial ports to use the monitor as needed. Ideally, changing from
serial port 0 1o serial port 1 should be no more difficult than
changing a couple of RAM vectors.

The new monitor had 10 use NO local RAM variables. This was
to permit more than one user to be running the monitor at the same
time, in tum allowing the monitor to work in a multi-user fashion.
Asitturned out, the only local RAM variables used by the monitor
are the /O vectors in RAM, described above, and a memory-test
flag used at RESET time.

The monitor had to provide some simple system checks upon
power-up or reset, but also had to be smart enough to recognize
when a user program was already installed in memory and not
overwrite that program with a memory check just because some-
one hit the RESET switch.

‘This monitor also had to be callable from a user program. This
means that a user should be able to exccute a JSR MONITOR to
enter the monitor from his program, make full use of the monitor’s
capabilities, then EXIT back to his program and continue as if
never having left the program.

A monitor that does all of the above, plus considerably more, is
presently running on my 68010 board. I will make the source
listings available to 68MJ readers for use in their own systems or
for any other non-commercial use they might have. Credit 10
different sources of information appear throughout the source
listings; if you use this code, please leave the notices intact so the.
original thinkers get the credit they deserve.

forthe 680x0 programmer; Iconsiderita“must-have”
book and have nearly destroyed my copy from overuse. (Don, how
abouta review of this book?) (o.k. Karl, we' l be looking forward
10it- DMW)

The PRINTF function, like its C namesake, permits the output of
formatted string and numeric information. All arguments to
PRINTF are placed on the stack and must be popped from the stack
by the calling program after the return from PRINTF.

addressof th ringtobep
requires any arguments of its own (such as a decimal number to bo
printed in the body of the string), those arguments must also b

hed Th be pushed

Each call to PRINTF must have at least one argument; the LONG
i d. If thi i

: Y
in reverse order of need, prior to pushing the address of the
formatied string. A short example might make this more clear,

Consider a formatted string to print the amount of RAM available
to a user and the first address of that RAM. It would make most
sense if the first value was displayed in decimal and the second
value in hex. An example of how you might want the display o
appear could be:

AVAILABLE RAM: 129300 BYTES FIRST RAM LOCATION: $42000

24 May '89

68 Micro Journal

The following segment of 680x0code, using the PRINTF function,
will do just that.

MOVE.L - (a7) FIRST RAM LOC IN AD TO
STACK

MOVE.L - (a7) AMOUNT OF RAM IN DO TO
STACK

MOVE.L ~ #FMISTRG,-(A7) PUSH ADDRESS OF STRING

ISR PRINTF DISPLAY THE STRING

ADD.L ¥12,a7 PULL 12 BYTES FROM STACK

BRA — REST OF PROGRAM FOLLOWS

EMISTRG:

BYTE 0D, $0A

BYTE 'AVAILABLE RAM: %D

BYTES .

BYTE ‘FIRST RAM LOCATION: $%X’

BYTE 50D, S0A

BYIE 0 REQUIRED NULL TERMINATOR

As you can sce, using the PRINTF routine is only slightly more
complicated than the 6809 PSTRING routine, and far more
powerful. Besides handling LONG decimal and LONG hex
values, the PRINTF routine can handle a variety of other

formatted data. The full list is:
WORD decimal
%d displays 16-bit signed decimal LONG decimal

32-bit
16-bit

% displays
%u displays

signed decimal WORD decimal
unsigned decimal LONG decimal

%0 displays 32-bit unsigned decimal WORD h
8x displays 16-bit hex LONG hex
8X displays 32-bit hex string

¥ displays
%c displays

null-terminated string character
single literal char

Although the routine is named PRINTF, its formatting convention
differs significantly from the C version of PRINTF; full details on
how the routine works can be found in “68000 Assembly Lan-
‘guage” and by looking throught the examples in the ROM monitor
code.

The implementation of 1/O vectors is based somewhat on the
method used by FLEX for redirecting I/O. The way the monitor
handles the I/0, however, is more flexible.

Al calls to the general purpose 1/O routines are to ROM entry
pointsnamed GETC, PUTC and KEYPRSD. Forexample, if your
program wants to output a character to the terminal, it pushes the
character (as a WORD) onto the stack and JSRs to PUTC. When
control returns from PUTC, your program must then pop the
character off of the stack before continuing.

Each of these primitive routines, however, is routed through a
RAM- based vector to the appropriate /O routine, depending on
which user port is active at the time. For example, if user port 0 is
active, GETC will jump through a RAM vector that is aimed at
GETCO, the routine that gets a character from serial port 0.

Although the code for both GETC and GETCO reside in ROM, the
link between the two is in RAM and may be modified at any time.
‘This link could just as easily point to GETCI1, the ROM-based
routine that services serial port 1. In this case, GETC would return

a character input from port 1. A full set of GETC, PUTC and
KEYPRSD routines exist in ROM for both of the serial ports.

Thi: RAM-based i 10!

be extended even farther. If a user’s program wants to talk o a
printer (as an example) or a virtual terminal, the RAM links to the
10 functi + = e !

to run. Because PRINTF and all other higher-level monitor
routines use only the general GETC, PUTC and KEYPRSD entry
points, the full monitor will run on any set of drivers installed with
the RAM links.

But how do you write a monitor that uses NO global RAM
variables? If you have never programmed on the 680x0 beforc,
youare in for areal treat. Motorola provided the programmer with
the LINK and UNLK instructions, specifically designed for creat-
ing stack-based variables. The d by these instruc-
tions is called a frame and it is crucial to much of the power in this
ROM monitor.

The customary way for a routine to handle variables used to
mvolve setting aside a small, flxed area of RAM for storage of

flags, counters, If
you tried to use the same piece of code to service two different
users, however, one user's variables would get overwritten by the
other’s values, causing the routine to lose track of what was going
on.

The answer o thi putthe . Since

each user would (hopefully) enter the routine with a different stack
pointer value, the variables associated with that user would be
safely stored out of the way and available only to the proper user.

‘This, however, leads to a different problem. Upon entry to a
routine, the item on the top of the stack is the return address
(something your routine is liable to need again soon). Behind that
address (going upwards in memory) may be arguments needed by
the routine itself. Behind those arguments will be other return
addresses and evemually Lhe “bottom” of the stack. ”nus means
tore local i

(thatis,

than the current stack pointer).

‘Well, how about)
on the stack? While it is possible to swre and retrieve variables
using the stack pointer plus some negative oftsel. this :echmque is
doomed to fail asinterrupt. ity begins.
‘The reason for this should be obvlolls. wl\en an mwn'um occurs,
the first thing the CPU i
and race off to service the interrupt. If this interrupt occurs in a
routine that is storing data on the stack using negative displace-
ments, that data will occasionally be trashed.

Enter, lhcn the LINK i msrnx:uon LINK “freezes” the smk by
alue i

(by convention this is usually A6), then moving the stack pointer

downwards in memory a specified amount. This has the effect of

reserving ablock of the stack for the routine’s use RELATIVE TO

68 Micro Joumal

May ‘89 2

THE A6 REGISTER. Now, references to stack-based variables
relative 10 A6 can be safely made, regardless of interrupt activity.
When it comes time to exit the routine, the UNLK instruction
repairs the stack (it even restores the selected register) and leaves
the return address on the stack, ready for the subsequent RTS.

The best way to get a handle on the LINK instruction and the
concept of stack framing is to study the examples in the monitor
code and to read the text in “68000 Assembly Language.” This is
an extremely valuable programming tool and is worth the time it
takes to understand it.

The ROM monitor makes heavy use of stack framing. In fact, the
only global RAM variables used by the monitor are the I/O links
discussed flag LONGs used to dg i
course of action to take on reset. The entire monitor, then, can be
thoughtofasah ine. Any user i

by simply treating it as a subroutine and JSRing to it. All of the
monitor’s text buffers, flags and other data will be safely tucked
away in the calling program’s stack.

‘The ROM monitor performs a few simple chores upon reset. It

tests the mapping RAM (used to assign physical RAM pages to

logical addresses) and it tests all of available RAM before it
. AM. ; i

But this testing of RAM, even though it is important the first
timeyou apply power, can be a real pain if the program you are
testing runs away, forcing a RESET. All of your patching and
testing can get wiped out by the RAM check, costing you a lot of
work.

To prevent this from happening, the monitor writes a key value in
aspecific location of RAM after it has successfully tested memory.
On the next reset, it first checks this location to see if the key value

tory memory dump (DU), the ability to upload Motorola S19
records with an optional address offset (RL), an imbedded CASE
support routine available to a calling program, and much more,

If there is enough interest in this ROM monitor, I can continue this
discussion in subsequent issues of 68MJ. For example, I already
have code running (not yet in the monitor ROM) that allows more
than one user to execute the monitor simultaneously, providing
true multi-user power at the monitor.

Editor's Note: If you want more of this please let me know, or
communicate directly with the author. With the availability of
" bargain” and surplus hardware , this type of information is like
a lamp-post in the night! Takes me back a few years, how “bout
you?

DMw
+ MONITOR
* Main routine in the 68010 EPROM.
* Note that there is no ORG statment in this block. I
should be
* LINKed to appear at address $800100, as that is wher
the COLDS
* vector is aimed.
EXTERNAL PRINTF, SINIT, PUTC, GETC, GETLINE
EXTERNAL ~DUMPMEM, FILL, SWEEP
EXTERNAL PROMPT

EXTERNAL ~CASE, UPPER
EXTERNAL ~ ACTRAM, TESTRAM
EXTERNAL CHANGE
EXTERNAL 519,60
EXTERNAL MONITOR, WARMS1

EXTERNAL DUMP_REGS
is still there. If it is, the RAM test is skipped, leaving the user’s
program intact.
PUBLIC WARMSS,COLDSS, PROCESSS, MONITORS
PUBLIC WARMS1S
As 1 have already mentioned, the monitor’s heavy use of stack BUFFER EQU -256 STACK-BASED TEXT BUFFER
framing permits it o be treated as a giant subroutine. In fact, the 7, STACK MUST ALLOW FOR 256
code itself reveals that there is a huge routine called MONITORS . REFER TO MONITOR
and a very small outer loop that exists solely to call MONITORS. (BELOW) FOR USE
If you want to access the monitor from within a user program,you *
r!eed (:nly I.SR to l.he.RQM address mw MONITOR. At that MON_SP: EQU SDEO STRGK BOTNIER
port will youmay USED BY MONITOR.
enter any legal monitor commands. If you then use the monitor’s * THIS IS THE
EXIT command, the monitor will execute a RTS, returning you to VALUE WRITTEN TO A7
L . BY BOTH COLDS AND
your original program. WARMS1.
This provides some very powerful capabilities to someone trying ~ COLDSS
to develop software on such a system. Adding a special keyboard i o L
sequence into your program code (for example) permits you to : M e
activate the monitor, view or modify memory as desired, then MOVE.W #53FF,DO SET A COUNTER
return to your program to continue with your testing. MAPTEST:
MOVE.W #501AS, (AO) WRITE A WORD
o . . MOVE.W (A0)+,D1 READ IT BACK
Tl-_us is ofnly a part of the resources _avax]able toa developer using AND.L #S01FF, D1 MASK OUT
this monitor ROM. Other goodies in the code include the obliga- CONTROL BITS
26 May '89 68 Micro Jounal

cwe W #501a5, D1 NOW TEST IT EXITMSG:
NE RAMFAIL BRA BYTE 0D, $0A, SOA
FAIL BYTE *An EXIT back to the ROM Monitor
DBF DO, MAPTEST COUNT THIS ist
D BYTE * pretty pointless, you know.’
BRA STARTUP BRANCH IF ALL BYTE 50D, S0A
GooD BYTE 0
RAMFAIL: * Main routine for the 68010 ROM monitor.
RAMFAIL DIE HERE WITH -
LEDS ON * Normal entry is from a COLD start following reset.
Alternate
STARTUR : * entry is from a user program via the WARMS (or WARMSI
MOVE.W #$3E00,5450000 LEDS: R _ G entry.
MOVE.W #52000,$400000 SWITCH ON *
LOWEST 4K BLOCK * A user program may also enter via the MONITOR jump
MOVE.L #MON_SP,A7 PUT STACK T vector in
LOWEST RAM * the ROM jump table. Entering through this point
MOVE.L #SASASASAS,SOFFC TEST A LOCATION permits a user
cmp.L #SASASASAS, SOFFC * program to activate the monitor with a special se-
BNE RAMFATL BRANCH IF quence from
FAILURE * within the program, use the monitor as if it had been
MOVE.W #53B00,$5450000 LEDS: _ _ G Y _ act ivated
BSR ACTRAM ACTIVATE ALL by a warm-start, then return to the user program with
SYSTEM RAM an EXIT
MOVE.W #53900, 5450000 t_YGY _ * monitor command. Entry by this technique should be
INIT INITIALIZE THE with a JSR.
SERIAL PORT * Leaving the monitor this way will return to the
MOVE.W #$3D00,$450000 LEDS: _ Y G _ _ calling program
MOVE.L #HELLO, - (A7) GET FIRST * with ALL registers preserved, though the CCR is not
MESSAGE saved.
BSR PRINTF DISPLAY IT B
ADDQ.L #4,A7 ADJUST STACK
MOVE.W #53F00,$450000 LEDS: _ _ G _ _ MONTTORS :
LINK A6, ¥BUFFER SET THE TEXT
cmp.L #SASASASAS, SFF8 BEEN THROUGH UFFER IN STACK SPACE
THIS BEFORE? MOVEM.L ~ DO-D7/A0-AT,=- (A7) SAVE EVERYTHING
BEQ WARMS1$ SKIP TEST IF SO LOOP :
BSR TESTRAM TEST ALL BSR PROMPT
AVAILABLE RAM LEA BUFFER (A6) , AQ POINT A0 AT
MOVE.L DO,- (A7) PUSH SIZE OF TEXT STRING
AM BSR GETLINE
MOVE.L DO, - (AT) PUSH IT AGAIN BSR PROCESSS
MOVE.L #SIZE,- (A7) PUSH MESSAGE BRA Loop
BSR PRINTF DISPLAY IT .
ADD.L A REPAIR STACK * NOTE: Exit from this routine is via the monitor EXIT
MOVE.L #SASASASAS,SFF8 WRITE FLAG TO command,
SHOW WE'VE BEEN * whose code follows in the case structure below and is
M THROUGH HERE labled
ALREADY (SEE STARTUP) v EXITS.
HELPS : .
MOVE.L #FIRST,-(A7) GET SIGN-ON MESSAGE
PRINTF PRINT IT
ADDQ.L #4,A7 FIX THE STACK -
* PROCESS
WARMS1$: *
MOVE.L #MON_SP,A7 ENTRY POINT THAT louhis is the core of the ROM monitor. It executes the
RESETS THE SP conm,
* fnund in the first two character positions of the lin
WARMSS : pointed
DUMP_REGS REINSTALL THE DUMP * at by AD. Note that this routine is available exter-
REGS VECTOR nally via
BSR MONITORS BRANCH TO THE * the jump table. This permits a user to load a string
MONITOR WITHOUT with a
B RESETTING THE STACK * monitor command, put the string’s address in A0 and
POINTER. JSR here
N * so the monitor can process the command. As is custom
MOVE.L #EXITMSG,-(A7) TELL USER EXIT ary, any
ISN'T GOING TO WORK * string submitted to PROCESS must be terminated with a
BSR PRINTE PRINT IT null byte
ADDQ.L #4,A7 FIX THE STACK * Addn:wnally, any monitor command must be two charac-
BRA ARMS S AN ENDLESS LOOP ters long
* and must begin in column one.
68 Micro Journal

May ‘89 27

PROCESSS : BYTE * Available RAM: %D bytes.
ce.B #0, (A0) ANYTHING ON er LINE? First non-RAM address: %X.’
BEQ PROCX BRANCH IF NO BYTE 50D, S0A
MOVE.L A0,Al YES, MOVE pomsn BYTE 0
INTO A1
BSR UPPER CONVERT TO UPPERCASE PROC_TBL:
MOVE.W (Al),DO GET THE FIRST.TWO WORD 8
CHARACTERS BYTE 0r,rur DUMP COMMAND
MOVE.L #PROC_TBL,A0 GET ADDR OF PROCESS LONG DUMPMEMS
BRA CASE DO THE COMMAND BYTE 'St W SWEEP COMMAND
LONG SWEERS
PROCX:
RTS RETURN TO MAIN LOOP BYTE E T FILL COMMAND
LONG FILLS
* JUMP TABLE FOR THE CASE SWITCH ABOVE. THIS TABLE IS BYTE (Y CHANGE
NEEDED SO COMMAND
* THE LINKER WILL PROPERLY RESOLVE THE ADDRESSES IN THE LoNG CHANGES
CASE SWITCH
* TABLE. BYTE HY,PEY HELP COMMAND
* LONG HELPS
DUMPMEMS: BSR DUMPMEM BYTE R, IL RAM LOAD
BRA PROCX (S19) COMMAND
LONG s198
SWEEPS: BSR SWEEP
BRA PROCX BYTE 67,000 GO COMMAND
LONG Gos
FILLS: BSR FILL
BRA PROCX BYTE B, EXIT COMMAND
LONG EXITS
CHANGES: BSR CHANGE
BRA PROCX LONG WHAT DEFAULT CASE
5195+ BSR 519 HELLO:
BRA PROCX BYTE 50D, $0A, S0A
BYTE : 68010 ROM MONITOR V1.2"
G0s: BSR G0 BYTE 50D, 508
BRA PROCX BYTE : Written for the Convergent
Technologies’
EXITS: BYTE * Mini-Frame’
ADDQ.L #4,A7 POP THE PROCESS RTN ADDR BYTE 50D, $0A
MOVEM.L (A7)+,D0-D7/A0-A7 RESTORE BYTE 0
EVERYTHING
UNLK A6 REMOVE THE FRAME FIRST:
RTS LEAVE THE MONITOR ROUTINE BYTE 0D, $0A, $0A
BYTE ‘ALl commands are two characters,
followed *
B BYTE ‘by any arquments.’
* WHAT BYTE 50D, $0A
N BYTE ‘Separate all arguments (in hex)
. rm; is the default CASE arm. It just tells the user by at least
that t BYTE ‘one space. Available’
B xnput was not too good. BYTE 50D, $0A
B BYTE ‘commands are:’
BYTE 50D, $0A, S0A
WHAT: BYTE * " Dump memory DU <addr>’
MOVE.L #WHAT_MSG, - (A7) BYTE 50D, S0A
BSR PRINTF BYTE Y Sweep memory SW <start>
ADDQ.L M A7 <stop> [times]’
BRA ROCK BYTE $00, 50
BYTE Change memory CH <addr>
<data>...<data> or’
BYTE 0D, 50A
WHAT_MSG : BYTE : CH <addr>’
BYTE $0D, $0A BYTE 0D, 50A
BYTE ' Beats me what you want. Try BYTE * Fill memory FI <start>
again. <stop> <data>’
BYTE o BYTE $00, 50A
BYTE RAM Load {S1-S9) RL <offset
SIZE: addr>’
BYTE $0D, $0A BYTE 0D, S0A
8 May ‘89 68 Micro Joumnal

BYTE ' Goto location GO
<transfer addr>’

CTRL STRING CHAR

EXT.W 00 * CLEAR HIGH
BYTE $0D, $0A BYTE
BYTE ¥ Exit monitor EX' CMP.B #'-',D0 * IS IT MINUS?
BYTE $0D, $0A, $0A BNE SKOPF * NO, TRY
BYTE 0 !
MOVE . W #1, LEFTJ (A6) * SET LEFT
JUSTIFY FLAG
END BRA LPOPF * TRY FOR NEXT
CHAR
SKOPF :
CMP.B #70',00 * IS IT < 02
TITLE PRINTF .ASM BLT SK1PF * YES, CONTINUE
- PROCESSING
* PRINTF — Subset/superset of C printf standard I/0 CMP.B #°9',D0 * 1S IT > 9?
function BGT SKI1PF * YES, CONTINUE
* PROCESSING
* Control args: MOVE.W FIELD(A6),D1 * GET CURRENT
o push last parameter in control string first, then FIELD SIZE
next-to- MULU #10,D1 * SHIFT LEFT
. last, etc. Push addr of control string last. ONE DEC DIGIT
% AND.W #3000F, DO * CONVERT
* %d Print signed decimal word ASCII TO NUMBER
. %u Print unsigned decimal word ADD.W DO, D1 * ADD TO FIELD
x %D Print signed decimal longword WIDTH
. %U Print unsigned decimal longword MOVE.W D1, FIELD (A6) * SAVE IT
* %x Print hexadecimal word BRA LPOPF * GET NEXT
* %X Print hexadecimal longword FORMAT CHAR
. %s Print null-terminated string SK1PF:
L4 %c Print character MOVE.L #DISPATCH, AD * GET CASE
* %v Cursor (x,y) - push x, then y as words TABLE ADDR
* %default Print next character as literal BRA case * DO CASE
* Taken from ‘68000 Assembly Language,’ by Krantz and yo crp:
Stanle: - MOVE.W DO,- (A7) * PUSH CHAR
* Listing appears on page 234. BSR PUTC * PRINT IT
ADDQ.L #2,a7 * TRASH
ARAMETER
PUBLIC PRINTES BRA LooP * DO IT AGAIN
EXTERN CASE, PUTC, CURSOR EXIT:
4 MOVEM.L (A7) +,D0-D6/A0-A2
* LOCAL VARIABLE DISPLACEMENT DEFINITIONS UNLK a6
& RTS
LEFTJ EQU -2 -
FIELD EQU i *
SIGNF EQU -6 D_ARG:
* MOVE . W (A2) +,D0 * GET VALUE,
* MOVE POINTER
PRINTFS: EXT.L DO * CONVERT TO
LINK A6, #-6 COMMON FORMAT
MOVEM.L DO-D6/A0-A2, - (A7) BSR sIGN * PRINT SIGN,
MOVE.L 8(A6),Al * GET CONTROL GET ABS()
STRING ADDR BRA PRINTDEC * PRINT VALUE
LEA 12(A6), A2 * GET POINTER *
TO PARAMETERS .
u_aRG:
MOVE.B (A1) +,D0 * GET CONTROL - MOVE.W (2) +,D0 * GET VALUE,
STRING CHAR MOVE POINTER
BEQ EXIT * QUIT IF IT'S AND.L #$0000FFFF, DO * ZERO HIGH
A NULL WORD
EXT.W DO * CLEAR HIGH BRA PRINTDEC * PRINT VALUE
BYTE .
CMP.B #'%',00 * SEE IF IT'S -
CONTROL FLAG D1 ARG:
BNE NO_CTL * BRANCH IF - MOVE.L (A2) +,D0 * GET VALUE,
ot MOVE POINTER
CLR.W LEFTJ (A6) * CLEAR LEFT BSR s16N * PRINT SIGN,
JUSTIFY FLAG GET ABS()
CLR.W FIELD (A6) * CLEAR FIELD BRA PRINTDEC * PRINT VALUE
WIDTH .
CLR.W SIGNF (A6) * CLEAR SIGN *
ELAG U1_ARG:
LPOPF: - MOVE.L (A2) +,00 * GET VALUE,
MOVE.B (Al)+,D0 * GET NEXT
Continssd On Page 36
May 89 P

68 Micro Joumal

MOVE POINTER

SPACES NEEDED

BRA PRINTDEC * PRINT VALUE LPO_PR:
PAGE VE.W DO, (AT) SAVE DO ACROSS CAL
- T0 _PUT
* MOVE.W #52020,- (A7) 1 SPACE 10
* sIoN UTRUT
. . BSR PUTC SEND THE SPACE
* PRINT SIGN IF NEEDED AND TAKE ABS() OF VALUE. ADDQ.L #2,A7 ADJUST STACK
- MOVE.W (A7)+,D0 RETRIEVE DO
SIGN: SUBQ.W #1,FIELD(A6) DECREMENT LOOP INDEX
TST.L 00 * Is IT BNE LPO_PR LOOP IF MORE SPACES
NEGATIVE? CHKSIGN:
BPL SKO_SG EXIT IF NOT ST SIGNF (A6) SIGN NEEDED?
MOVE.W #-1,SIGNF (A6) * FLAG SIGN BEQ CHKEXIT JUMP IF NoT
NEEDED MOVE.L DO,D2 SAVE DO ACROSS CAL
SUBQ.W #1,FIELD(A6) * TAKE AW 10 _pUT
ONE FOR SIGN MOVE.W #5202D, - (A7) PUSH SIGN
NEG.L 00 * MAKE ABS () BSR pUTC SEND IT
SK0_SG: ADDQ.L #2,A7 ADJUST STACK
RTS VE.L D2,D0 RETRIEVE DO
* CHKEXIT:
* PRINTDEC PAGE
* COMMON DECIMAL OUTPUT ROUTINE. VALUE IS IN DO UBON * POSTFIX
ENTRY. -
* * PRINTS ANY POSTFIX SPACES.
PRINTDEC: *
CLR.W b1 * OUTPUT DIGIT COUNT POSTFIX:
LPO_PD: SUB.W D6, FIELD (A6) DIGITS ALLOWED
pIVy #10,00 * DIVIDE NUMBER BY 10 - ACTUAL
BVS O_FLOW * NUMBER TOO LARGE BLE sK1_pO EXIT IF NOT
swap D0 * GET REMAINDER IN DO.W NEEDED
MOVE.W DO,-(A7) * PUSH DIGIT Le0_pO:
ADDQ.W #1,D1 * BUMP DIGIT COUNT MOVE.W #52020,- (A7) SPACE TO SEND
CLR.W * GET RID OF REMAINDER BSR pUTC OUTPUT THE
SWAR 00 * PUT QUOTIENT IN DO.W SPACE
TST.W 00 * IF 2ERO, ALL DONE ADDQ.L #2,A7 ADJUST STACK
BNE LPO_PD * LOOP IF NOT DONE SUBQ.W #1,FIELD(A6) COUNT THIS
MOVE.W D1,D6 * USED FOR FIELD ADJUST SPACE
BSR PREFIX * DO PRFIX SPACES BNE LEO_PO LOOP UNTIL
SUBQ.W #1,D1 * ADJUST LOOP INDEX CNTR DONE
L1p2_PD: sK1_PO:
T app.W #5830, (A7) * MAKE DIGIT ON T0S -> RTS
PAGE
BSR pUTC * SEND TO OUTPUT X_ARG:
ADDQ.L #2,A7 * EAT DIGIT FROM TOS MOVE.W #3,D1 NUMBER OF
DBF D1,LP2_PD * LOOP UNTIL ALL DONE DIGITS TO PRINT
BSR POSTFIX * DO POSTFIX SPACES MOVE.W #4,D6 USED FOR FIELD
BRA Loop EXIT TO CON ADJUST
PARSER MOVE.W (A2)+,D2 TRANSFER
o_FLOW: OUTPUT VALUE
MOVE.L #OFLOWSTR,-(A7) * PUSH CONTROL sWAP D2 POSITION
STRING ADDR OUTPUT VALUE
BSR PRINTFS * BRINT IT BRA PRINTHEX oo IT
ADDQ.L #4,A7 * ADJUST STACK *
BRA Loop * CONTINUE
OFLOWSTR: X1_ARG:
‘*overflow*’,0 MOVE.W 47,01 NUMBER OF
PAGE DIGITS TO PRINT
- MOVE.W #8,D6 USED FOR FIELD
* PREFIX ADJUST
. MOVE.L (A2)+,D2 TRANSFER
* OUTPUT ANY NEEDED PREFIX SPACES AND SIGN. OUTPUT VALUE
- BRA PRINTHEX GO PRINT IT
PREFIX: PAGE
TST.W FIELD(A6) CHECK IF FIELD NONZERO .
BLE CHKSIGN IF ZERO, SKIP NEXT PART * PRINTHEX
TST.H LEFTJ(A6) LEFT JUSTIFY SELECTED? *
BNE CHKSIGN RANCH IF NOT * OUTPUTS VALUE IN D2 IN HEX. D1 IS NUMBER OF
SUB.W D6, FIELD (A6) DIGITS ALLOWED DIGITS T0 PRINT.
- ACTUAL .
BLE CHKSIGN BRANCH IF NO PRINTHEX:
May 89 68 Mcro Joumal

BSR PREFIX OUTPUT PREFIX SPACES V_ARG:

LPOPH: MOVE.L (A2)+,-(AT) MOVE BOTH ARGS
MOVE.L #HEXDIGITS, AO ADDRESS OF AT ONCE
TRANSLATE TABLE BSR CURSOR POSITON THE
ROL.L 44,02 PUT MSD IN LOW cus
FOUR BITS ADDQ.L 44,7 DROP BOTH ARGS
MOVE.W D2,D0 PUT IN WORKING BRA Loop CONTINUE
REGISTER COMMANDS
AND.W #$000F, DO LEAVE ONLY LOW *
4 BITS *
MOVE.B 0(RO,D0.W),DO0 GET DIGIT FROM DEFAULT:
TABLE MOVE.W DO,-(AT) PRINT CHAR AS
MOVE.W DO,-(A7) PUT ON STACK 1s
BSR pUTC SEND IT BSR pUTC
ADDQ.L #2,A7 DROP PARAMETER ADDQ.L #2,A7 ADJUST STACK
DBF D1, LPOPH LOOP UNTIL BRA Loop DO NEXT
DONE PAGE
BSR POSTFIX ADD TRAILING .
SPACES * CASE DISPATCH TABLE FOR PRINTF.
BRA Loop DO NEXT *
CONTROL CHAR DISPATCH:
HEXDIGITS: oW 9 NUMBER OF
1012345678 9ABCDEE" VALID OPTIONS
PAGE oB 0,740 84 PRINT SIGNED
S_ARG: DECIMAL W
MOVE.L (A2),AQ GET STRING LONG D_ARG ADDRESS
ADDR FROM STACK
CLR.W D6 GET STRLEN FOR 0B [$u PRINT UNSIGNED
FIELD ADJ DECIMAL W
SLEN: LONG U_ARG ADDRESS
1ST.8 20y + LOOK FOR
TERMINAL NULL o8 0,70 8D PRINT SIGNED
BEQ SKO_SA BRANCH If DECIMAL L
FOUND 17T LONG D1_ARG ADDRESS
ADDQ.W #1,D6 COUNT THIS
o8 0,1y % PRINT UNSIGNED
BRA SLEN LOOK AT NEXT DECIMAL L
CHAR LONG U1_ARG ADDRESS
SKO_SA:
MOVE.L (A2)+,A0 GET STRING b8 0,1 x" 4x PRINT
ADDR AGAIN HEXADECIMAL W
BSR PREFIX SEND LEADING LONG ADDRESS
SPACES
LPO_SA: 0B 8X PRINT
1ST.B (a0) END OF STRING? HEXADECIMAL L
BNE SK1_sa NO, KEEP LONG ADDRESS
PRINTING
BSR POSTFIX ALL DONE, SEND oB %5 PRINT NULL-TERM
FINAL SPACES STRING
BRA Look JuMe ouT LONG S_ARG ADDRESS
SK1_SA:
MOVE.B (A0)+,00 GET CHAR FROM 0B 0,7¢ 8c PRINT CHARACTER
STRING LONG c_aRG ADDRESS
MOVE.W DO, - (A7) PUT ON STACK
BSR PUTC AND SEND IT oB 0,y %V SET CURSOR TO
ADDQ.L #2,A7 ADJUST STACK X, Y
BRA LPO_SA CONTINUE LONG V_aRG ADDRESS
* LONG DEFAULT UNKNOWN CASES
C_ARG: HANDLED HERE
MOVE.W (A2)+,- (A7) GET ARGUMENT
BSR PUTC SEND LITERAL END
CHAR
ADDQ.L #2,A7 DROP ARGUMENT
BRA Looe NEXT COMMAND

FOR THOSE WHO

68 Micro Joumal May '89 37

