zé‘f} MOTOROLA MEX68KECB/D2

MC68000
Educational Computer Board
User’s Manual

QUALITY e PEOPLE ¢ PERFORMANCE

MEX68KECB/D2

JULY 1982

MC68000
EDUCATIONAL COMPUTER BOARD

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORciser and EXORmacs are trademarks of Motorola Inc.

The computer program stored in the Read Only Memory of this device contains
material copyrighted by Motorola Inc., first published 1981, and may be used
only under a license such as the License For Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

WARNING

THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO
FREQUENCY ENERGY AND, IF NOT INSTALLED AND USED IN
ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE
INTERFERENCE TO RADIO COMMUNICATIONS. AS TEMPORARILY
PERMITTED BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A COMPUTING
DEVICES PURSUANT TO SUBPART J OF PART 15 OF FCC RULES,
WHICH ARE DESIGNED TO PROVIDE REASONABLE PROTECTION
AGAINST SUCH INTERFERENCE. OPERATION OF THIS EQUIPMENT
IN A RESIDENTIAL AREA IS LIKELY TO CAUSE INTERFERENCE,
IN WHICH CASE THE USER, AT HIS OWN EXPENSE, WILL BE
REQUIRED TO TAKE WHATEVER MEASURES MAY BE REQUIRED TO
CORRECT THE INTERFERENCE.

Second Edition
Copyright 1982 by Motorola Inc.
First Edition January 1982

Dear Customer,

Congratulations on your recent purchase of the 68K Educational Computer Board.

YOUR MOTOROLA WARRANTY

Motorola Inc. warrants this product against defects in material and workmanship
for a period of ninety (90) days from the original data of purchase. THIS
WARRANTY EXTENDS TO THE ORIGINAL CUSTOMER ONLY AND IS IN LIEU OF ALL OTHER
WARRANTIES, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 1In no
event will the Seller be liable for any incidental or consequential damages.

During the warranty period, Motorola will replace, at no charge, components that
fail, provided the product is returned (properly packed and shipped prepaid) to
Motorola at the address printed below. Dated proof of purchase (such as a copy
of the sales receipt or bill of sale) must be enclosed with shipment to validate
warranty. We will return the shipment prepaid via UPS.*

This warranty does not apply if, in the opinion of Motorola, the product has
been damaged by accident, misuse, neglect, misapplication, or as a result of
service or modification by other than the authorized Motorola Service Center
referenced below.

AFTER-WARRANTY SERVICE

After your product is ninety (90) days old or warranty has been voided in any
manner, you may return the product to us for repair. Please be sure to ship
prepaid, properly pack the product, and include a certified check or money order
for $150.00 payable to Motorola Inc. Include any failure information you may
have to help expedite repair time. We will return the shipment prepaid via
UPS.* We hope you will never need our repair, but it's nice to know you are
protected anyway -- and that help is nearby.

MOTOROLA INC,
1711 W. 17th Street
Tempe, Arizona 85281

* FOR EXPEDITED RETURN SHIPMENTS, PLEASE INCLUDE AN ADDITIONAL $20 IN YOUR
PAYMENT. THIS CHARGE IS TO COVER AIR SHIPMENT. PRICES ARE SUBJECT TO CHANGE
WITHOUT PRIOR NOTICE. PLEASE ENCLOSE A COPY OF THE ATTACHED PROBLEM REPORT
WITH YOUR BOARD.

PROBLEM REPORT

NAME

COMPANY

ADDRESS

CITY, STATE, ZIP CODE

PHONE NUMBER

PLEASE FILL IN THE APPROPRIATE AREAS

WARRANTY (90 DAYS FROM RECEIPT OF PRODUCT)

| | YES (BE SURE TO INCLUDE A COPY OF YOUR SALES RECEIPT)

| | NO (BE SURE TO INCLUDE A CERTIFIED CHECK OR MONEY ORDER FOR $150.00%)

EXPEDITED SHIPPING

| | YES (BE SURE TO INCLUDE AN ADDITIONAL PAYMENT OF $20.00%*)

| 1 NO

APPLICATION INFORMATION

FAILURE INFORMATION

* PRICES SUBJECT TO CHANGE WITHOUT NOTICE

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION TO THE MC68000 EDUCATIONAL COMPUTER BOARD

WHAT IS THE MC68000 EDUCATIONAL COMPUTER BOARD? .secescsce
GENERAL HARDWARE DESCRIPTION .sccceccecsccosceccssccccsccnce
SYStem MEMOLY ceoecescscocssossccososscssssscscsassnsens
Serial CommunicationsS POItS ccecccceccccccscscscccsccssns
Programmable TiMer ..eeeececcccccccceacscnsscscsscssesnce
Parallel I/0 Port (Printer Interface) .eeceeeccccccccccee
Audio Tape INterface ceeeececececccocceescossasessccescess
SYSTEM CONFIGURATIONS ceceoescacccoscccssosscscscsccsccncne
SOFTWARE CAPABILITIES ccceccccccoccccoscscosscsossossccsccanscae
SPECIFICATIONS cecescccccsecacscssccssscscssscscscsssssscssconse

o ®
. o
b WK -
{ |

l—l-‘l-'l—-'l—'b-l-'l—‘l—‘l—'l—'
AN DS DB W

el e e R g S
L]
M WNDNNDNDN N

't
©

CHAPTER 2 INSTALLATION AND POWER-UP INSTRUCTIONS

UNPACKING INSTRUCTIONS seececcecscccssssoosscsscsssccscnsscce 2—3

PREPARING THE BOARD FOR USE ceeeccccscccsccosscsnosscsensces 2-5
1 Attaching Standoff LegS ceeeeececececccccssscnssanscscse 275
2 Providing Power to the BoArd .cecececoccscescscscacsnsse 2-5
2.1 BaNANa JACKS eeecessscccccssccssscsssscsssossssssssssess 275
2.2 Alternate Method - Discrete WiresS ..cesececccccccenees 2=7
3
4
4

Checking System Clock JUMPEr ceececcccssscssccscssoannes 27
Selecting Terminal Baud RAte ececececcccscccsscscaccacas 2-8
.1 Normal Operation - Transmitting and Receiving ‘
at the Same Baud RAte .eeesscecsccsccccccsccssscsces 2-8
Special Operation - Transmitting and Receiving
at Different Baud RAtES seesesescccscscsccssscscscss 2-10
SYSTEM HOOKUP INSTRUCTIONS ececsoccaseossccssccsscssccsccecse 2-11
Connecting the Terminal ..ceseeccccccccscccccsccscssesss 2-13
Connecting the Power SUPPlieS .e.eeeececcccccccscoceneas 2-14
SYSTEM TURN-ON AND INITIAL OPERATION ceeeecccccasccccccces 2-14
PREPARATION FOR USE OF SYSTEM OPTIONS cesecescsccccccscses 2-16
1 Printer OPtion ceeceececscccscececcccscscscscsvccssscacs 2-16
2 Host Computer (Modem) OPtion eeeeeececccccccccsccsescecss 2-18
2.1 Selecting Host Baud RAte seecececscccccssccccssscscsnes 2-18
2.2
3

NDNDNDNDDDDNDNDND
* e 0
MDD

N
N
.
>
.
N

L]
)
N =

*« o

LUt abe WwwWw
L[]

Cable Connection 000 600000 00000000 00PCROOECEROIROOEPRPOEINOSIITOEL 2_20
AUdiO Cassette Option P 000000 0000000000008 00000000000s0 0 2_21

NNDNDNDDNDNMNDDDNDNDNDND

CHAPTER 3 USING THE MONITOR/DEBUG FIRMWARE

WHAT IS TUTOR? eccecesoccasccccsssssssssssccccscsssscnsose
OPERATIONAL PROCEDURE seccececscocscesssscscscosccscscnccnse
System TUIN=0N ..cccescccccccsossrsesscssssssssccccccecs
System Initialization ecceceececccccecrccocsscscceccees
RESET BULLON secesescsccececsosssoscoscscosssscoscssscncsce
ABORT BULLON ceceecsccccccscscscssoccscocssssssccsccsccns
USEr PrOJraM eecesescesscscssecosssssccssssssoasnsnss
System Operation ceceececcccccsacscsscsscsscsssscssscncee
TERMINAL CONTROL CHARACTERS scevevescccccsscscssscsascsccs

WNNDNNNDNNDN -

wwwwtluwwww
YU YU O s b W

« o o
« o »
WNNDNDNH-
o o o
w N
[

WWwwwwwwww

TABLE OF CONTENTS (cont'd)
Page

.4 COMMAND LINE FORMAT ceeeeecvesccccsccscsscassccsscasscasas
.4 Expression as a Parameter e.ceevesssesssssccsessnsscsens
Address as a Parameter ..eeeeescessssscscsccccccossonce
1 AddresSs FOIMAtS seececececscssscosscscssossccccssssnsne
.2 Offset RegiSterS teceeeceessccessvscsccsscccsscnsensee
Command EChO BACK .eeeseesssscccessscsvcssssasssassscns
TUTOR COMMAND SET seceescscescscscsssccscscsccnscscssccnse
BF ~ Block of Memory Fill ceceeececsccccncscsccnsaseaes 3-1l
BM — BlOCK MOVE s4esecsccccccccosnossssasasscsssssssssss 3—12
BR — Breakpoint ..eeeeeessesssccoccccconcnossossesannss 3—13
BS — Block of Memory S€arCh ceeeecececcscceccecccssssee 314
BT — Block of MemOry TeSt .eeececscsccccccssascsosescsses 315
DC — Data Conversion seeeececssscrcssscccesssccscssessseas 3-16
DF - Display Formatted Registers ..c.eeeecscecsssscscsees 3-17
DU - Dump Memory (in S-Record FOrmat) ..eessseessssases 3-18
GD - Go Direct Execute Program ...esseeceesssssssssssees 3—19
GO - Execute Program .eeessssccsecoccsccsscscesnsnssanses 3—20
GT ~ Go Until Breakpoint ..sceceececsscescesssccacsseaee 3-21
HE — HElD cceevescccscacscosoonssssssssassscsscesscnnce 322
LO - Load (in S-Record Format) .eceeeecscsccccssccscess 3=23
MD — MemOry DiSPlay eeeescccessscsccscscaccccsassocsssss 3—24
MM — Memory MOdify eeeeceeccccecccsceccccocsccaccnsenes 3-25
MS — MemOry Set ceecceeccecececesscccsscssccsascscnnsess 3—28
NOBR — Remove Breakpoint ..seecessccccceccccscecsccsaess 3-29
NOPA - Reset Printer Attach ..ecececeeccecccccsceacecses 3-30
OF — OffSet teeeeeessceressosseascescassacenssssncssees 3-31
PA - Printer AttacCh seeessescccccscccsssccesnsasscccass 3—32
PF — POrt FOrmat eeecesccccccccccoccossosnssocsasssccses 3—33
.Rx - Individual Register Display/Change ...seceesessee 3-35
T — Transparent MOde ..eeeecceessccresssesssssacccasess 3—36
TR — TLACE teeveseccssscoosnsssavssssssosassccccssssscess 338
TT - Trace to Temporary Breakpointceeececesscssces 3-39
VE - Verify (in S-Record FOrmat) .eeeceecsessescssassees 3—40
COMMAND SUMMARY AND MESSAGES ceccesssssssssesssccscennsss 3—41

uwwtiuwww
WO OJdJ~JO

L)
NN D WN

® & e & 9 & ¢ & e o 2
DN RN NN b bt b s s O 0

WWWWWWWLWWWLWwWLwWwLwWwWwWwWwwwwuwwwwwwwwwwwwww
L)
NN WNHFOWOIAUIdWNDEFHO

CHAPTER 4 USING THE ASSEMBLER/DISASSEMBLER

INTRODUCTION ceeecoscesscccccccsssscsscscsssccsssscsssaccoes
1 M68000 Assembly LangUAJE ceesssssccccsscsssccsassscsnss
1.1 Machine-Instruction Operation CodeS ..ceevessscassses
1.2
2

NN N

DIireCtivVeS .seieeeeeesennsssesosccsssscsssocnssssscssnsns
Comparison with MC68000 Resident Structured Assembler .
SOURCE PROGRAM CODING sccececcacescscsossscssscscsscscosse
Source Line Format seeeeceececessssccecccassessassncoocscss
Operation Field c.ceeecreosccsscscsssssccscssccccccsns
Operand Field seeeecccececccccsosncasasssssssscssccosce
Disassembled Source LiNe ..icecessccccccccsscsasvencs
Mnemonics and DelimiterS seecececcesccasssccccsccccscns
Character SEL ceeececsessssscsvosvoscsscssssssssocscnsse
Instruction SUMMALY seececscoesssscossessscccsasssoscocsse
Arithmetic OperationsS seeecececscesscscccocccscconssns
MOVE INStruCtion secececesecsccsosscocsacsccscscssvcas

L] L]
WOX0XOANANANTOTULTUN B _WWWW

« o e
* o o
ULl W N
11

NN b = e b

.
N

[= A ST T S L S S T S S
L] [] .

ii

BWWWWWNNDNDNDNDNDNDNDNDNDN

Uttt BEEBBRBRBWLWWWWWWWWWWWWWNNNMNNONNODNDNDNDNDNNDNNDNDNDNDN

=00~ 0 W

* L]
e e
e o

L]) . - - Y
[] []
B WN -

GO dWwWwwwNn =

.
e o o o o o
o o o
WN -

.
W N

¢ o
e o o
U W

e o o o o
e o o o
bR WwwwN -

.
.

¢ o
N -

n‘bnbAbhhhhbhhbbbbhn&hhhhhhhbbbb&hd}bhb&bhbhbhubrbub;b
*

* o

N -

TABLE OF CONTENTS (cont'd)

Pag e

Compare INStrucCtionsS seeeeeeescccsccssccccsccsscccsss 4-9
Logical OperationS ..eeeccecssecccccscesssosssccessees 4-10
Shift Operations .eeeeceeeecccecessccccccccscsccssses 4-10
Bit OperationS ceeseeecsesssescesssccecoscscccosassaecs 4-11
Conditional OperationS ececeececeoscecssscscccscssacess 4-11
Branch OperationS .ecececececcecsceccccscsssoossescecess 4-11
Jump OperationS ceeececesccccccoscscsccsssssccassassee 4-12
DBcC INSErUCtion seeeeccccceersasscccnssccosesscscsnes 4-12
Load/Store MUltiple ..esececcsecssccvssccccasassacees 4-13
Load Effective AJAreSS sceeescesccesccoccccccsscsesss 4-14
Variants on INStruction TYPES ceeeecesccosscscccccsees 4-14
Addressing MOdeS seceecscescescccscscscscsssssscssssces 4-15
Register Direct ModeS .eeeecececcccscccccscsnocscssss 4-18

~ Memory AJAress MOdeS cecseecscessccsscccssssscsscsses 4-18
Special Address MOdES ceeseeesscscscccccccccsssessses 4-20
Notes on Addressing OPtioNS seeeescessccccccccsccases 4-23
DC.W Define Constant Directive ..cceeeeceeeccccceccess 4-24
ENTERING AND MODIFYING SOURCE PROGRAMS ..cceseccccecnsces 4-24
Invoking the Assembler/Disassembler ..cccececceccscscces 4-26
Entering a Source Line eeeecesesccsscsscccssccssccsssss 4-26
Program Entry/Branch and Jump AJdresSses .e.ecececesccess 4-27
Entering Absolute AJAreSSeS .ecseccscsscccsscscccsses 4-27
Desired Instruction FOIM ceeceeesnsssccssccccsscssees 4-28
Current LoCAtion seeecercccccscosscscccscconcsssscess 4-28
Assembler Output/Program ListingsS eeceecccecccccccceces 4-29
Error Conditions and MeSSGgeS eeeeesscccsssscrssesssseces 4-30
Trap ELYOIS cececeesesccccosccscccscscscscssscsccssecss 4-30
Improper Character .ececesssecoscssccsssccccccssssses 4-31
Number TOO LArge eseeecocesscssssccscccccocsscccsesces 4-32
Assembly ErFOrS c.sseecsccsscescsssccssccasscssccsses 4-32
TESTING/EXECUTING PROGRAMS .cescesecccsccccccssccccccccces 4-34
System Initialization seececceccsscccccccccacecsccceses 4-34
Setting BreakpointS .seceecesccccsccccccscocsccsccscass 4-35
Program EXECUtiON sceecesevccessssnsccccssccssscscccecces 4-36
Trace MOAE eeeeeeesccssassssnssssssccssccsssosccascccss 4-37
Inserting and Deleting Source LineS ..eceeeesccoccccceee 4-39
SAVING PROGRAMS .secocecrsassecsssccsssssccssssscccsasccee 4—42
Saving Programs ON TAPE ceesecoescccccssccssccscsseseces 4-42
Loading and Verifying Programs from Tape ..cceececeeces 4-43
Upload tO @ HOSL ceecevesosccccscosscosscocsccsccsaceses 4-44
EXORCiser as HOSL secevvescecsssccessassoccsssscccess 4-45
EXORMACS @S HOSt eeeececccccscccscscceccccsssccccceas 4-46
Download from a HOSt seeeceessscccccccccoccoccccccnsese 4-47
EXORciser as HOSt sceececcccecesccscccccsccccocsssces 4-47
EXORMACS AS HOSL eeieeessccsssosscccscosssessncsscses 447

iii

TABLE OF CONTENTS (cont'd)
Page

CHAPTER 5 TRAP 14 HANDLER

WHAT IS THE TRAP 14 HANDLER? cececvceccscccccccacsocsccss 5-3
Types of EXCePLiONS sececeeccsssscsccccscccaccncocccses 5-3
MC68000 Exception Processing .sseeeeceecescecccsescccccses 53
Trap 14 Handler ...cceeceecescsceccnscccvcccsconsescccs 5-4

TRAP 14 CALLING SEQUENCE .ccececessceccsccscscssscsccscnse 5-4

TRAP 14 FUNCTIONS eecscosececcoscssscasacssscsssscasccsscss D=0
Input/0utput FUNCtIoNS .eeeeseeeccccscessccsscseccccsss 96
Conversion FUNCEIONS eeeeececccssscosossccssccsssscssans 579
Buffer Control FUNCLIONS eeeeeeessscecsocssscsssscsceas 5O-10
Transfer Control to TUTOR eeeecscecsssoscsssscsascssess D=12
Inserting Additional FUNCtionS .eeeeeeeeececcecseeccess 5-13

« o ® * s o
e« o o .
G W N W N =

(SO O I O O IO S G RO R V)
.
WWwWwWwWwwwh i+~

CHAPTER 6 SYSTEM INPUT/OUTPUT

INTRODUCTION — INPUT/QUTPUT LSI DEVICES ceecceessccsoscecs 6~-3
MC6850 Asynchronous Communications Interface Adapter .. 6-3
MC68230 Parallel Interface and TiMereceesescseeces 6-5
1/0 Device AJAreSS MAP eeeeeccossssscccsscsccssscccssses 07

SERIAL COMMUNICATIONS — PORT 1 AND PORT 2 scceccccecococne 6-10
ACIA Control RegiSter .eeeescesecscsssccccccccsccccccccne 6—-10
BAUd RALES eeecocvsacossssossscasssssosssssssssscsnsses 0-12
TUTOR Firmware I/0 DrivVerS ..eeeeceeccsscssccsoescsesss 0-13
Port 1 Terminal INterface ..eeeeceecocscssessscnsccsees 013
POrt 2 HOSt INLEIFACE +sevssveessccssscassassescsssssees 0-14
Transparent MOde .eeeeececccecsvseseoscescscesscsccssconcas 6-14

PARALLEL I/0 PORT 3 — PRINTER INTERFACE .cecceccassccoces 6-15
Signal Line Configuration ..ceeeeevecccccsccccccccecans 6-15
Programming the PI/T sececceccscscecsscscscsesccscsccccs 6-17

AUDIO TAPE INTERFACE — PORT 4 cuccccccccccsssccnncnssccse 6-19
Data Transfer Baud RAtE ..c.eeeecessscscscscssosscsacssss 019
Circuit Operation ..eeeececsescsececessssccsscsnsessssss 6-19
Selecting Noninverted DAtd eeseeecesesscecsssscscosssss 0-21
Programming the PI/T ceveecececssssssesccssssscsasssses 0-22

PI/T TIMER sececccssccoscssoscscsccssosossssscessccscscossscnos 6-22

SYSTEM INTERRUPTS seececoscccscsccscoscsccsssoscscnccasascas 6-23
MC68000 INtErrupt SLLUCLULE cieeeassscecoccccccsssssses 0-24
Interrupt Software ROULINES .eecevccrcrscncccccccnccnns 6-26

¢ ®© o e s o o e @
* o o o o o .
UL WN - W -

e o
N =

L]
*

.
* e
oW N

L] *® e o
OO UT B b D BB W WWNNDNDNNNDNN N
L]

o)) WeWe) We)Wer e Ne) e Je) e o) Ne)We) Wer W) o) We) e Weo) Wey We) ey
L

.

N =

CHAPTER 7 HARDWARE DESCRIPTION

INTRODUCTION o ccocesocossocecscacsscsssseanssssssssasancsee /=3
FUNCTIONAL DESCRIPTION - eccocssascscscoscscsssscsssscccsccse 7-3
MC68000LA MiCrOPrOCESSOL cecevovsscscsssccscssscsssssses =3
AJAreSS DECOAE vvveeeseossesscsssssssssssssssssescasaases /=3
32K BYte RAM sevecececassccosssssascossssaccscssssassces /=D
16K BYte ROM ceceeececoccecsccsscsssscscvssccsassscncoscns 7-5
Serial Communications POItS ..cececccsscscscscssscssscsss /=D
MC68230 PI/T (Printer Interface, Cassette Tape
Interface, and TiMEr) ..cecececsvccssccssccccsscssccss /=0

NN N
L]

NN N NN
* o ¢ o o

« o o)

YU B W N -

iv

TABLE OF CONTENTS (cont'd)

7 Interrupt Control LOJIC seeeesscrcsceasessscessccscccane
8 System ClOCKS ceessescosssssccscscccccsssssccsosssccnccns
.9 Bus Timeout LOGIC seeeceoreessoessssassssscssssscssssssss
.10 System Initialization ..eecescscccccccccssscecscsaccnane
.11 ABORT FUNCEION ceveseececsscecscassccesccssccsssssccncns
INTERFACE USING THE WIRE-WRAP AREA ..cscecvcccscccssnccnncee
Wire~wrap Device Mounting Ar€a ..ceeeecccccccescscscssocss
Auxiliary I/0 Header J16 ..ceeceecesessccscssccccssvccns
MC68000 Bus Signal ConNeCtionS ..eesseccsssccscccccccasas
Extending System Address DeCOde .eeeseesccccccoccscccces
Asynchronous Bus Interface ..cceeecescccccccssncsccnsccce
M6800 Type Synchronous 8-Bit Bus Interface ..ccececececes
M6800 Page Address DeCOde .seeeesscccscscccasscceanancns
Autovectored Interrupt Level 4 ..ccceeesccccccccsssnce

WWwWwwwwwwwdhddddNoND

[]
AU W N

e 0
[N

NNNNSNNNANN NN

CHAPTER 8 SUPPORT INFORMATION

1 INTRODUCTION cccoceccococsssscscsoscscesasassassscsossssanccce
2 CONNECTOR SIGNAL DESCRIPTIONS .ceeveveescccccccscsssaccace
3 JUMPER HEADER, CONNECTOR, AND SWITCH LOCATIONS .csessccces
4 PARTS LIST tecececesvscsccsccscoscccsscssssasscccsccsccncsssce
5 DIAGRAMS cecceccccscsensvssccscassscsossccsssssscscscsoscsccs

APPENDIX A S—RECORD OUTPUT FORMAT ® 8 0 0600 0 ¢ P PSSO OE0 SO0 0E 0SBSOS ESIDNINSESIICRS
APPENDIX B OPERATION WITH MECHANICAL AND LOW SPEED TERMINALS ...cssee
APPENDIX C RS-232C SERIAL COMMLNICATIONS @ 00 000 0000000000 SSOOSILIIESEECEDS

Pag e

7-6
7-6
7-6
7-7

7-7

7-7

7-10
7-10
7-10
7-14
7-15
7-15
7-16

FIGURE 1-1.

LIST OF ILLUSTRATIONS

MC68000 Educational Computer Board .eseesscescccsssessssss
Functional Block Diagram see.ceesessesscccescscescecscsscese
System ConfigurationsS eceececescesssescscssscssscssscsnses
MEX68KECB Board LAYOUL seceevcssccveesscvcssscccesoasscesns
Hardware Mounting Detail .eeeeecessecsccesscessccasccscans
Detail Showing Location of Holes J12, J13, J14, J15 to

Connect Discrete Power Wires ..c.ceeececsveccssccnccnnss
Interconnection Diagram for Baud Rate Selection ..seeeecess
Terminal Baud Rate Select Jumper (J10) ceescesscscscesccscs
Minimum System Configuration ceeeecescesesscccecssscessnses
Terminal Cable Detail and Signal Line Connections
Terminal Cable Connection to MEX68KECB «eeeeecesscccccccses
Expanded System Configuration with Options seeeeececccecees
Printer Cable Interconnection Diagram .e.eesecescscsccccoecs
Printer Cable Connection to MEX68KECB .eveeescecsscsssccnes
Host Baud Rate Select Jumper (J9) cecescccccsscccscssssnsne
Host Cable Signal Line ConnectionS ..eeeeeesecccccscsscces
Host Computer Cable Connection to MEX68KECB .eeesscccecsee
Cassette Recorder Cable Signal Line Connection .ceeeesccecs
Cassette Recorder Cable Deta@il scecsesccecssccsscosscncace
Cassette Recorder Cable Connection to MEX68KECB .eeceesoee
Flow Diagram of TUTOR Operational Mode seeececccsccccsssccs
Command Description FOrmMAt .eeeeesscsssecscecccecssccsscess
Example Program to Convert ASCII Digit to

Hexadecimal VAlUE .eeceseescoscsccsesscscoscscccccscsnns
ASCII Character Set seeeceecccssccccccsscccsscssscsscscosccnse
Example Program as Entered into Educational Computer
Example Program LiSting seceecccccscsscecsccsccssscssscens
Examples Of Trap ELFOIS sceceesscccssssasscscscccoasccnnsse
Examples of Improper CharacCterS ceeececcececcecsesescssvcasscas
Example of a Number which is Too Large .eeeceeececescsccsss
Examples of AsSembly EIFOrS ceesccesscccccssscsaccscscncnse
Initializing Registers and Setting Breakpoint for

EXample Program seececesscsssssscsescsoccsscscsoscsansanse
Execution of Example Program ..ceeeesecscscccccccsscsscces
Trace Sequence for Example Program (2 sheetS) .c.ccececeses
Inserting Missing Source Line into Example Program e.......
Corrected Example Program LiSting seecececcscecsssccosasee
System I/0 BloCk DiaQram sececoesccsccccccssccssacscsascsns
MC6850 ACIA Block Diagram sececsseccessscscssscceassssccssans
MC68230 PI/T Block Diagram seeesessscevssosscscsscccccsacsns
Serial Communications Ports Functional Schematic Diagram
Printer Interface Port 3 Functional Schematic Diagram
Audio Tape INterface ..eeseeccescccsccsssccsccoscccsonsoce
Header J5 LoCation ..eseeceescecsescsccescssccsscccccassce
Address Translated from 8-Bit Vector Number ...cceceececees

vi

2-11
2-12
2-13
2-15
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2~24
3-2

3~-10

4-25
4-25
4-29
4-29
4-30
4-31
4-32
4-33

4-35
4-36
4-37
4-40
4-41
6-2

6-4

6-6

6-11
6-16
6-20
6-21
6-26

FIGURE 7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
8-1.
8-2.
8-3.

TABLE 1-1.
2—1 .

8_4 .

8_5 .
8_6 .

LIST OF ILLUSTRATIONS (cont'd)

Block Diagram - Educational Computer Board eceeecccscccscess
MEX68KECB Signal Connection Points For Wire-Wrap ..cececese
Detail of Wire-Wrap Ar€@ ccecececccscscccccscscsosccscccss
Auxiliary I/O Header Mounting Detail .eceececcecocccccssces
Address Decode Logic For Memory Map Primary Segments .c...
DTACK* Signal Generation ..ceecceececccscccccccccscccccosacs
M6800 Page Address Signal Generation .eceeesessccccecccces
MEX68KECB Header, Connector, and Switch Locations
MEX68KECB Parts Location Diagram seecececscccsccsccccsscas
MEX68KECB MC68000 Educational Computer Board

Schematic Diagram eeseessscecesscccesosccscsacssscccesces

LIST OF TABLES

SpPeCificationS ceeececesecsssssssssscsessssosscssssncsnsnsscscns
Headers J9 and J10 Jumpers to Select Serial Port

Baud RAtES ceeecsssccccocsccssoosscsssssssssssssssscssne
TUTOR COMMANAS secececsssscosssssccssoscsssscssccssssssssscs
TUTOR Commands and OPLioNS eeeecescccescsccesosssccscssssee
Error Messages and Other MeSSAgeS sessescsccccccccccsccsns
AJAress MOAES .eeeecsccssssccvsorcccscssssssssosssccscsssons
TRAP 14 Function SUMMAIY seeceescsscrsscssccscscscscssacce
Input FUNCLIONS seceesecsscoccccscccscssccccscssssssscacns
Output FUNCLIONS seeececsceescssceoscsccccaccccsasssscsnos
Hex Conversion ROULINES .seeeccccccscersacscccccsccoscscanse
ASCII Conversion RoOULINES seeeeecaccerscsccccccsccocccscssns
Buffer Control FUNCtionS secececssscosccscccesccccccoscsane
Transfer Control tO TUTOR cceccccoccsccccsccccssssaccnnane
Inserting Additional FUNCtionS .eceecccecsccscccccecsccace
MC68230 PI/T AJAAresSS MAP eceeosesssscscscsosccscncncscnsssss
MC6850 ACIA AJAreSS MAP eeeccccsccscccccscscssscsscscsscsccos
ACIA Control Register BitS .eeececescecccccscscscscosccoscons
PI/T Registers Used in Printer Interface .cceececcecccocces
Interrupt Priority LevelS sceeecescccsssccsccscscccnccccne
Memory MAP secesccccscocasvescaccccsscosscsscsscscssccscscsocns
J17 Signal DesignationsS eeeceeccccescccccccsccoccveccosccos
Address Segment Enable Sigals for Wire-Wrap Users .eccece.
Connector J1 Printer Port 3 Pin Assignments ..cceecccevecss
Connector J2 Audio Cassette Tape Interface

Port 4 Pin AssignmentsS cceeeeccsccsscccccscsscccsscscncs
Connector J3 Serial Communications Port 1

(To Terminal) Pin AssignmentsS c.eceececcccccccsscccsscces
Connector J4 Serial Communications Port 2

(To Host/Modem) Pin ASsSignments .ceeeesecscccscscccccces
MEX68KECB Connector and Header Manual References .sceeceee
MEXG8KECB PartS LiSt seecececccscossoccssssssscesssccccces

vii/viii

Page

7-2
7-8
7-9
7-11
7-13
7-14
7-15
8-2
8-11

8-13

2-9
3-9
3-41
3-43
4-16
5-5
5-8
5-8
5-10
5-11
5-11
5-12
5-14
6-8
6-9
6-12
6-18
6-25
7-4
7-12
7-13
8-4

8-5

8-6
8-7
8-8

CHAPTER 1

INTRODUCTION TO THE MC68000 EDUCATIONAL COMPUTER BOARD

The purpose of this manual is to provide the user with a comprehensive guide for
understanding and utilizing the MC68000 Educational Computer Board. The
computer board is intended primarily as a self-supporting means for evaluating
and learning about the MC68000 16-bit microprocessor. Chapter 1 contains
information describing the board and its system configuration.

Page
1.1 WHAT IS THE MC68000 EDUCATIONAL COMPUTER BOARD? ..essescscesssss 1-3
1.2 GENERAL HARDWARE DESCRIPTION ecccecesccsccscsccscccscscscssssses 1—4
1.2.1 SYStem MEMOLY ceeesceovssasscscsscscosscnsesasccssssssssosensese 1-4
1.2.2 Serial CommunicationS POILS ceecsecesocscsscsccccccssccsccccss 1-4
1.2.3 Programmable TiMer ...ceceeccescccssssccssssscsssssccnnsnsecse 14
1.2.4 Parallel I/0 Port (Printer INterface) .e.ceeeseccsecescocscesses 16
1.2.5 Audio Tape INterface ..eeesecesscsccssscesscssccssscscnsssssace 10
1.3 SYSTEM CONFIGURATIONS seeessccccsccccscsscscacsssssecsscscnsccscs 10
1.4 SOFTWARE CAPABILITIES seceeceascccccoscosccssccsscossonsssnssess 10
1.5 SPECIFICATIONS seeeososcesasncecacccsosascsassasscnsnsasancanssacces 1—8

paeog 193ndwo) Teuorieonpd 00089OW °T~T FHUNOIJ

: . .
S By AL E.

A3Y IOBUIEM -~
8 AZ4 lOBUIEM-~¥E

¥IALNGNOD IYROILLYINGT DOOBIIN

i

4w

P
! -y
T a Ty e 7

i

ABAWL063804

ALLIEA 62178
3000 Mnl

MLEB22018
6678201

b

&z :.am(..

e

e . NMOIN zr 1¥D Yin . il ire iuoe <
“ B Il _-—;—oa—.———r—— —_———————————_————__——w—

CHAPTER 1

INTRODUCTION TO THE MC68000 EDUCATIONAL COMPUTER BOARD

1.1 WHAT IS THE MC68000 EDUCATIONAL COMPUTER BOARD?

Intended primarily for training and educational use, including college-level
courses and industrial in-plant training, the MC68000 Educational Computer Board
(ECB) serves as an economical yet comprehensive introduction to systems based on
the M68000 family of microcomputer products. Located on a single small printed
circuit (PC) card (Figure 1-1), a complete microprocessor system is provided,
including an MC68000 16-bit microprocessor, memory, parallel input/output (I/0),
and serial communications I/0. The user must only connect an RS-232C-compatible
"dumb" terminal and power supplies to have a functional system.

For ease-of-use, the ECB has a resident firmware package that provides a
self-contained programming and operating environment. The firmware, aptly named
"PUTOR", provides the user with monitor/debug, assembly/disassembly, program
entry, and I/0 control functions. Utilizing the capabilities provided by the
system, the user can investigate and learn the computing power and architectural
features of the MC68000. This system also provides a working example of the
microprocessor external bus structure and interface to memory and peripheral

devices.
The Educational Computer Board's features include:
a. 4-megahertz MC68000 16-bit MPU.
b. 32K bytes of dynamic RAM (DRAM) arranged as 16K x 16.
C. 16K-byte firmware ROM/EPROM monitor addressed as 8K x 16.

d. Two serial communication ports provided for a terminal and a host. Both
are RS~232C-compatible and have selectable baud rates.

e. Programs can be downloaded from or uploaded to a host systém.

f. A parallel port (16 data lines with handshake) can be used for I/0 or for
a Centronics~compatible printer interface.

g. Audio tape serial I/0 port.

h. Self-contained operating firmware that provides monitor, debug, and
disassembly/assembly functions.

i. 24-bit programmable timer.
j. Wire-wrap area provided for custom circuitry.

k. RESET and ABORT function switches.

1.2 GENERAL HARDWARE DESCRIPTION

The MC68000 Educational Computer Board provides the RAM, ROM, timer, and I/0
necessary for learning and evaluating the attributes of the MC68000. This
microprocessor has a 16-bit data bus and a 23-bit address bus (Al-A23). The
address bus is, in effect, 24 bits and provides a memory addressing range of 16
megabytes. The processor also has eight 32-bit data registers, seven 32-bit
address registers, two 32-bit stack pointers, a 32-bit program counter, and a
16-bit status register. The MC68000 Data Sheet and User's Manual (MC68000UM),
which are included in the ECB's documentation, describe the device in detail.

A 4-MHz MC68000 MPU is used on the educational board (a functional block diagram
is shown in Figure 1-2). All the memory and I/0 devices communicate with the
MPU via a common parallel bus. The various functional areas of the board are
described briefly in the following paragraphs.

l.2.1 System Memory

The system memory consists of 32K bytes of dynamic RAM and 16K bytes of ROM or
EPROM (two 8-bit bytes = 1 word). The RAM is used both for scratchpad space for
the TUTOR firmware and for user programs. Approximately 2K bytes are reserved
for the monitor scratchpad; the remaining RAM (approximately 30K bytes) is
available to the user. The system firmware occupies the 16K-byte read-only
memory.

1.2.2 Serial Communications Ports

Two asynchronous serial communication ports, designated Port 1 for the Terminal
and Port 2 for the Host, are provided on the board. Both of these ports are
RS-232C-compatible (an E.I.A. standard). The terminal that provides user
interface is connected to the educational computer via Port 1, and Port 2 can be
connected to a modem or directly to a host computer. The host computer can be
used to provide more powerful software capabilities such as program assembly,
file management, and editing, and for downloading or uploading programs. Also,
an operational condition called transparent mode can be used on the MEX68KECB.
This transparent mode effectively bypasses the board and allows the terminal to
communicate directly with the host. The terminal and host baud rates must be
the same for this mode,

Both serial ports can be jumpered for various data transmission rates (110-9600
baud). Also, if required, either port can be modified to transmit and receive
at different baud rates.

1.2.3 Programmable Timer

Contained within the MC68230 PI/T device is a 24-bit general purpose timer. The
timer is a synchronous counter that can be used for generating or measuring both
time delays and various frequencies. The timer can be clocked by a 5-bit
prescaler or directly, and the clock source can be the 4-MHz system clock or an
external clock.

MC68000L4

[7)] -l
17} o PORT 1
ADDRESS | E| & RS232C ™™ TERMINAL
DECODE a|l Bl <
a o a
«<| O A
y
- MC6850
WATCHDOG | e ACIA 1
- /.
4
. |
-
< BAUD RATE
i GEN. [©
16K x 8 ROM - >
MCM68764 < - MC6850
OR ACIA 2
MCM68A364 - > » (110-9600 BAUD)
@ A . S VAR
16 /g
[
y
PORT 2
RS232
C e HOST
32K x 8 DRAM | >
MCM4116B MCPGI?T”"
(16) -t O >
- a o »
" 16 "8
A A
| r
PRINTER CASSETTE
BUFFERS INTERFACE
PORT 3 PORT 4
FIGURE 1-2. Functional Block Diagram

1.2.4 Parallel 1I/0 Port (Printer Interface)

Also derived from the MC68230 PI/T device is the parallel I/O port (Port 3) that
consists of eight buffered output lines plus two handshake lines, and eight
unbuffered bidirectional lines plus two handshake lines. The buffering and port
configuration is compatible with a Centronics-type printer interface. The I/0
can also be used to interface into custom user devices.

1.2.5 Audio Tape Interface

Another I/O port (Port 4) 1is configured to provide a two-wire audio tape
interface. A tape recorder can be connected to store and retrieve user
programs. The audio tape interface has a data transmission rate of between 1000
and 2000 baud, depending on the bit stream.

1.3 SYSTEM CONFIGURATIONS

The MC68000 Educational Computer Board requires only the following items for the
ninimum system configuration (Figure 1-3):

a. The MEX68KECB board

b. Power supplies (+5 vdc, +12 vdc, -12 vdc)
C. RS-232C-compatible terminal

d. Interface cables

With this configuration, the user can exercise the system, generate and modify
code, and run programs, For hard copy (printout), tape storage, and/or
interface to a host system, additional equipment is required. Any of these
optional items can be used with the ECB.

Cables to interface the terminal, host, and printer can be manufactured by the
user (directions are contained in this manual) or can be purchased from Motorola
Systems, These include:

PART # DESCRIPTION

M68RS232M RS232 - Edge Connector/Male DB25 Conn
M68RS232F RS232 - Edge Connector/Female DB25 Conn
MEX68PIC Centronix Printer Cable

NOTE: It may be necessary to relocate the key in the edge connector for the
specific port.

1.4 SOFTWARE CAPABILITIES

The Educational Computer Board operates under control of the "TUTOR" firmware.
This 16K-byte package provides easy interface into the ECB and has excellent
functionality. TUTOR is basically a system monitor which controls communication
with the terminal and exercises other elements of the system. It provides debug
capability, disassembly, assembly, and I/0 control. All commands within TUTOR
retain the same command line syntax and format as other Motorola MC68000-based
products.

MINIMUM CONFIGURATION

|

|

I

|

|

| TERMINAL

| *“DUMB”
*R$232C COMP.

|

|

|

|

|

|

70 HOST
OR MODEM
(OPTIONAL)

AUDIO
CASSETTE

RECORDER
(OPTIONAL)

=/

PRINTER
(OPTIONAL)

FIGURE 1-3.

MEX68KECB

POWER SUPPLY

System Configurations

An assembly listing of the TUTOR firmware, excluding the interactive assembler
and disassembler modules, can be purchased from Motorola under the part number
M68KTUTOR. Machine-readable source for all the modules can be purchased under
part numbers:

MG6SKTUTORS - VERSAdos 8" floppy diskette
M6BKTUTORT - VERSAdos hard disk cartridge

For program development, an interactive assembler/editor function is used in
which the source program is not saved. Each instruction is translated into the
proper object code and is stored in memory on a line-by-line basis at the time
of entry. The assembler source statement is composed of operation and operand
fields; line numbers, labels, and comments are not allowed.

In order to display an instruction, the firmware disassembles the object code
and displays the instruction mnemonic and operands. Editing is done by
re-entering a source statement.

If higher-level assembly capabilities are required, a macro assembler or cCross

assembler can be run on a host computer. Data can be uploaded and downloaded to
the host via serial Port 2.

1.5 SPECIFICATIONS

Table 1-1 lists basic specifications for the MC68000 Educational Computer Board
(MEX68KECB) .

1-8

TABLE 1-1. Specifications

Microprocessor

MC68000 (4 MHz)

Input/Output

Parallel I1/0

Cassette Interface
Serial I/0 Ports
Interface

Baud rate

MC68230 (16 data lines, 4 control lines) normally
configured as Centronics-type printer interface.
24-bit programmable timer included in MC68230.
1300 baud serial audio tape.

Two — one terminal and one host (modem).

RS-232C interface.

Strap selectable: 110, 150, 300, 600, 1200, 2400
4800, 9600.

System -«clock

8-MHz crystal providing 4-MHz processor operation.

Memory

32K bytes RAM
16K bytes ROM

Power requirements
(Typical)

+5.0 V/750 ma, +12 V/50 mA, -12 V/50 mA

Operating temperature

0 to 50° C

Board Dimensions (Approx.)

LxWxH

7.5 in. x 10.5 in. x 1.5 in.
(19 cm x 27 cm x 4 cm)

1-9/1-10

CHAPTER 2

INSTALLATION AND POWER-UP INSTRUCTIONS

This chapter provides unpacking, preparation-for-use, installation, and power-up
instructions for the MEX68KECB. The board has been designed to require a
minimum of hardware modifications; however, the proper serial port baud rates
must be selected and the proper cables used to ensure trouble-free start-up.
Please read and follow the instructions in this chapter to provide quick
start-up and to avoid possible damage to the board.

Page

2.1 UNPACKING INSTRUCTIONS ceeococccvccocoscscccssssccccscccssconcns 2—3
2.2 PREPARING THE BOARD FOR USE sscevecocsocscccccscscssscsscassssse 2=
2.2.1 Attaching Standoff LegS ceseccecscecssccccssssccscssecssscsse 2=5
2.2.2 Providing Power to the Board ecececcecccscessesccsceccssccsecas 2-5
2.2.2.1 Banana JacksS secececcecccscccscscocccsccscsccssccccssccsses 275
2.2.2.2 Alternate Method - Discrete Wires ..ceeeeecececccccccccsccees 2-7
2.2.3 Checking System Clock JUMPEr ceceessecsscssscossscssscssssasce 2=7
2.2.4 Selecting Terminal Baud Rate seeecsessccccccsssessscssssossses 2-8
2.2.4.1 Normal Operation - Transmitting and Receiving

at the Same Baud RAte ccveeececccscoccscessccssscnscescse 2-8
2.2.4.2 Special Operation - Transmitting and Receiving

at Different Baud RAteS .ceceeeeecccecececacecscscocceees 2-10
2.3 SYSTEM HOOKUP INSTRUCTIONS eccceccescscccssccccsscsccoscsssesese 2-11
2.3.1 Connecting the Terminal .eeececscscescsscasesccscssescsscsses 213
2.3.2 Connecting the Power SUPPli€S seseeseeccccsscesssssscascsansas 2-14
2.4 SYSTEM TURN-ON AND INITIAL OPERATION cecccccccccccsccscocssesecs 2-14
2.5 PREPARATION FOR USE OF SYSTEM OPTIONS .cecesccccscscsccccccscses 2-16
2.5.1 Printer OptioN ceseescescccssessccesscssssscsscsssscsssessscsscs 2-16
2.5.2 Host Computer (Modem) OPtion ceeecececscccsssscescscccsesssce 2-18
2.5.2.1 Selecting Host Baud RAte .seeeeseccssessccescossscnssenscsseae 2-18
2.5.2.2 Cable Connection seeeeecescecesscccscsccscsosscsescssassses 2-20
2.5.3 Audio Cassette Option .eceseecccccscsscsscscssccscscsscsseeas 2-21

2-1/2-2

CHAPTER 2

INSTALLATION AND POWER-UP INSTRUCTIONS

2.1 UNPACKING INSTRUCTIONS
NOTE
If shipping carton is damaged on receipt,

request carrier's agent be present during
unpacking and inspection of the module,

Unpack the computer board from its shipping carton. Save the packing material
for storing or reshipping the board. Refer to the packing list and verify that
all items are present. As shipped, the MEX68KECB includes:

a. MEX68KECB Educational Computer Board

b. Four 6-32x1/4" screws

C. Four threaded 6-32x3/4" nylon standoffs

d. Four banana jacks (including hex nuts and solder lugs)

e. Seven plastic cap jumpers
After verifying that items (including any optional parts) are present, inspect

the board for damage. Ensure that there are no broken, damaged, or missing
parts, and that there is no physical damage to the printed circuit board.

CAUTION

WHEN HANDLING THE BOARD, AVOID TOUCHING AREAS
OF MOS CIRCUITRY; STATIC DISCHARGE CAN DAMAGE
INTEGRATED CIRCUITS.

noAe] pieog goEN8IXIW

*T-Z2 @NO1d

SHINYOO @ @31vI01

SHOVI VNVYNVE ‘S310H ONILNNOW (Ov1) ¥
Ho4)
S$310H / / / 0s°0t /
ONILNNOW .b/i-
OW .bIL-¥ - / / / 0001
—— 0 — _ * _ _ —O0 1
AZL— AZL+ AS+ QNO
SIF v ELF HOLIMS HOLIMS
13834 lyoav
| FAS 1S

in
Y3QVaH NId Z ~

ar
¥3aV3H NId 2 ~

6r | .
H3AV3IH NId 9t 059

1SOH ™~ 009
\\

o P

Y3AV3IH Nid 9t I
TYNIWYIL _
)
or
40— —o0 |
3
[| O | S] |
‘ ‘ or
_ T _ _ 4L _ _ L : } ¥3QV3H NId 2
(z L40d) (1 L40d) {v 140d) (€ L40d) %2070
1SOH TYNIWY3L 3113SSVYD HILNIYd
vr er 2r L

2.2 PREPARING THE BOARD FOR USE

The MEX68KECB is intended primarily for training and educational use, including
college-level courses and industrial in-plant training. In its most simple
configuration, the board requires only an RS-232C compatible terminal (plus
cable) and power supplies to function. The preparation instructions are
intended to set up the board for this configuration. Use of optional features
(audio cassette, host, or printer) requires additional preparation, which is
covered in other sections of this chapter.

Figure 2~1 shows a layout of the MEX68KECB. Board preparation concerns the
following items:

a. Because the board is intended for laboratory use, standoff legs can be
used to allow the board to set on a bench.

b. Power connections must be made. Banana jacks can be used or wires can be
soldered to the board.

c. Check that the system clock jumper (J6) is in place.

d. The terminal baud rate must be selected.

2.2.1 Attaching Standoff Legs

Four holes located at the corners of the board are used to mount the nylon
standoffs. These are screwed to the back side (opposite of component side) of
the card, as shown in Figure 2-2,

NOTE

The user may choose to mount the module on or in an enclosure
via these holes. Dimensions are shown in Figure 2-1, The
nylon standoffs can be used as spacers to provide clearance
of 3/4 inch needed by the banana jacks.

2.2.2 Providing Power to the Board

2.2.2.1 Banana Jacks. Four banana jacks compatible with standard banana plugs
are provided for power connectors (+12 vdc, +5 Vvdc, Ground, -12 Vdc). These are
mounted in four 1/4-inch holes at a corner of the board, as shown in Figure 2-2.

ITe3aq burjunow aiempiey °z-z TuNOId

MIHIS ONILNNOW 2€-9 TYNOILHO IV@

3ovd4Uns
ONILNNOW TYNOILdO

«PIE X 2€-9 dJOANVYLS NOTAN

N1 ¥3aalos

1NN X3H

gO3IN8IXIN

Aovr
VNVNVE X3H

M3HOS ./l xX2EX9]‘m

2.2.2.2 Alternate Method - Discrete Wires. 1If banana plugs are not desired,
discrete wires can be used to supply power to the board., Wires can be soldered
to the lugs supplied with the banana jacks (Figure 2-2) or four small holes are
provided to solder discrete wires to the board. These holes (designated J12,
J13, J14, J15) are shown in Figure 2-3, and interconnect supply voltages as
follows:

HOLE DESIGNATION VOLTAGE
J12 Ground
J13 +5 Vdc
Jl4 +12 Vdc
J15 -12 vdc
NOTE

Use of the banana jack solder lugs is recommended because
of greater mechanical strength and to prevent p0551b1e
damage to the board.

— (J 4 N

- |

HOLES TO

© J12 © J13 @J14 ©J15 -—7F— CONNECT
[{ GND +5v +12v -12v DISCRETE WIRES

O
1/4” BANANA
JACK MOUNTING
HOLES

FIGURE 2-3. Detail Showing Location of Holes J12, J13, J1l4, J15
to Connect Discrete Power Wires

2.2.3 Checking System Clock Jumper

Referring to Figure 2-1, a 2-pin header designated J6 should have a plastic
jumper cap in place on it (as shipped). If not, one of the jumpers supplied
with the board should be put in place. This jumper connects the system clock
source.

2-7

2.2.4 Selecting Terminal Baud Rate

2.2.4.1 Normal Operation - Transmitting and Receiving at the Same Baud Rate.
Normally, the terminal transmits and receives at the same baud rate. Although
the terminal Port 1 can be configured to transmit and receive at different
rates, the board as supplied uses a single common baud rate for the port. The
host interface Port 2 has similar attributes. The interconnection circuit is
shown in Figure 2-4,

ACIA 1
CUT FOR SEPARATE
J8 RXC & TXC BAUD
RATES
ERMINAL u13 TXC 5
T MC6850 /
RXC
L
BAUD RATE 49 J10
GENERATOR
I 11 |
9600
L 2
4800 Q! 1092
No24—o0
2400 é 3 3 Q4
\06—0
1200 5 5 Q6
i u14 .
; — MC14411 600 ¢ o2—07 08
10
300 ¢ 9\0—0 9 Q10
12
150 ¢11 O———0 11 Q12
14
10 ¢13 O——O013 O 14
500
015 15 O 16
|] 1 }
ACIA 2
J7
u12 TXC i
HOST MC6850 O
RXC
L2
CUT FOR SEPARATE
RXC & TXC BAUD
RATES

FIGURE 2-4. Interconnection Diagram for Baud Rate Selection

2-8

Referring again to Figure 2-1, two headers marked J9 and J10 are shown. Each
header consists of a double row of eight pins (16 total), and is used to select
the baud rate for a serial port. Header J10 is used to select the terminal baud
rate (ACIA 1, serial Port 1).

The pins are jumpered together using a plastic jumper cap (one of seven provided
with the board). The cap should be positioned on header J10, as shown in
Figure 2-5, to select the desired baud rate. Table 2-1 lists which pins must be
jumpered for a given baud rate.

TABLE 2-1. Headers J9 and J10 Jumpers to Select Serial Port Baud Rates

JUMPER PINS SELECTED BAUD RATE
1-2 9600
3-4 4800
5-6 2400
7-8 1200
9-10 600
11-12 300
13-14 150
15-16 110

PLASTIC CAP JUMPER
IS POSITIONED TO

SHORT PINS FOR 110 BAUD RATE
DESIRED BAUD RATE
(9600 SHOWN)
1 2 9600
3l o o |a 4800
sl o o |s 2400
710 o s 1200
sl o o |10 600
|l o o1 300
13 (o) O 14 150
5| 0o o|1s 110

FIGURE 2-5. Terminal Baud Rate Select Jumper (J10)

2~-9

Figure 6-4 is a functional schematic diagram of the serial communication ports.
The RS-232C signal lines required at each port are shown.

Port 1 must receive an active level on DTR (data terminal ready), or data will
not be transmitted. The terminal connected to Port 1 must drive DTR. CTS
(clear to send), DSR (data set ready), and DCD (data carrier detect) are each
asserted when DIR is asserted. Refer to Appendix C for further information.

2.2.4.2 Special Operation - Transmitting and Receiving at Different Baud Rates.
The MEX68KECB 1is wired with the transmit clock (TXC) and Receive clock (RXC) of
each ACIA (refer to Figure 2-4) tied together and then jumpered to the selected
baud rate. To provide different baud rates, the connection between TXC and RXC
must be cut and individual baud rates connected to each. Perform the following
steps to select separate transmit and receive baud rates for the terminal:

a. Cut the signal trace located between Pin 1 and Pin 2 of header J8 on the
back side of the printed circuit board. BE CAREFUL —— be sure to cut the
correct trace; it is approximately 1/8 inch long.

b. The transmit baud rate (TXC) is selected by using the plastic jumper cap
on header J10 in accordance with Table 2-1.

c. The receiver baud rate (RXC) is selected by wire-wrapping Pin 1 of header
J8 to the desired odd numbered pin of header J10. Again, use Table 2-1
to determine the correct pin.

NOTE

The MEX68KECB as now configured is ready to be connected to
a terminal and power supplies. If the user wants to utilize
options of the printer, tape recorder, and/or host computer
(serial Port 2), additional preparation is required. See
the appropriate section in this chapter on each option.

2-10

2.3 SYSTEM HOOKUP INSTRUCTIONS

As previously stated, the most simple configuration requires only the MEX68KECB,
a terminal, and power supplies (Figure 2-6.) This section describes the
required interconnections to hook up this configuration.

TERMINAL
. “DUMB” TERMINAL CABLE -
USE MOTOROLA
* RS232C COMP. — PART #MGBRS232M
OR #M68RS232F
OR CUSTOM
MEX68KECB

POWER CABLES - BANANA
PLUGS OR DISCRETE WIRES

d
99

POWER SUPPLY

FIGURE 2-6. Minimum System Configuration

2-11

20 OR 25 CONDUCTOR

FLAT RIBBON
CABLE

3M #3365-20
OR
3M #3365-25

\

/

KEY
(OPTIONAL)

25 “D” SUBMINIATURE MALE 25 “D” SUBMINIATURE FEMALE 20 CARD EDGE CONNECTOR

(PIN) CONNECTOR (SOCKET) CONNECTOR PART #'S:

PART #°S: PART #'S: 1. AMP #88373-6

1. CIRCUIT ASSEMBLY CORP 1. CIRCUIT ASSEMBLEY CORP 2. ANSLEY #609-2015 M
#CA-25-SMD-P #CA-25-SMD-S 3. BERG #65764-002

2. ITT CANNON #DBSP-B25P 2. ITT CANNON #DBSP-B25S 4. 3M #3461-0001

3. ANSLEY #609-25P 3. ANSLEY #609-258

4. WINCHESTER #49-1125P 4. WINCHESTER #49-11258

25 PIN “D” SUBMINIATURE CONNECTOR

RED 2»

o
Zz
o
2 : :
a a » o« Z « 9
> > - [72] - [Q
- o (&) o 77} [a] [=]
Q1 2 3 4 5 6 7 8 9 10 11 12 13
N\ 15 16 17 18 19 20 21 22 23 24 25
\
\'4
NOT CONNECTED
1 3 5 7 9 11 13 15 17 19

27 47 6. 8. 107 127 1w 187 187 207

20 PIN CARD EDGE CONNECTOR

FIGURE 2-7. Terminal Cable Detail and Signal Line Connections

2-12

2.3.1 Connecting the Terminal

The terminal is connected to the MEX68KECB with a cable (normally flat ribbon)
requiring a 20-contact card edge connector on the MEX68KECB end and a 25-contact
"D" subminiature connector on the terminal end. The "D" subminiature connector
can be either pin (male) or socket (female), as required by the user terminal.
Both of these cable types are available from Motorola:

PART NUMBER DESCRIPTION
M68RS232M RS232 CABLE - Card edge connector/Male DB25 connector
M68RS232F RS232 CABLE - Card edge connector/Female DB25 connector

As an alternative, the user can manufacture his own cable. Figure 2-7 shows a
detail of the cable, lists several suitable vendor part numbers (any equivalent
part can be used), and shows the conductor line designations. The cable
requires a 25-conductor flat ribbon; connectors should be installed according to
manufacturer's directions. Also, the card edge connector can be keyed to
prevent incorrect cable connection.

The suitable cable is connected to Port 1 (connector J3), as shown in
Figure 2-8, with the other end going to the terminal.

TO TERMINAL
RED STRIPE

(PIN #1) '\\\\\\\‘~/——~_,
CABLE
PIN 1 “////////

P e Uy 1 s g B

MEX68KECB

FIGURE 2-8. Terminal Cable Connection to MEX68KECB

2-13

2.3.2 Connecting the Power Supplies

Three supply voltages are required for the board -- that is, +5.0 Vdc + 5%,
+12.0 vdc + 10%, and -12.0 vdc + 10%. If the banana jacks are used, cables with
standard banana plugs are required to connect the power supplies. With discrete
wires, the wires are connected directly to the suitable voltages.

All supply voltages must be referenced to ground, and these connections should
be made before turning on power. The voltage turn-on must be done in proper
sequence to prevent damage to the RAM devices. Follow system turn-on
instructions in the following section.

2.4 SYSTEM TURN-ON AND INITIAL OPERATION

CAUTION
POWER SUPPLY VOLTAGES MUST BE TURNED ON IN PROPER

SEQUENCE TO AVOID DAMAGE TO THE DYNAMIC RAM DEVICES.
FOLLOW THE TURN-ON INSTRUCTIONS TO PREVENT PROBLEMS.

After the cables are in place, the final step to system turn-on is applying
power. The dynamic RAM devices (MCM4116's) require that the negative voltage
-12 Vdc be applied first. This is especially important when individual power
supplies (such as laboratory supplies) are used. The power-up sequence should
be:

a. Ground must be connected common to all power supplies.

b. Turn on -12.0 Vdc.

c. Turn on +12.0 Vdc.

d. Turn on +5.0 Vdc.
If a single multivoltage power supply is used, it is not possible to turn
voltages on independently. However, with most power supplies the -12 Vdc and
+12 vdc come up before the +5 Vdc because these are lightly loaded and do not
have to charge heavy internal filter capacitance. The user should test the
multivoltage supply, simulating typical loading from Table 1-1, to determine if
the ~12 Vdc comes up first. When powering up with a single multivoltage supply:

a. Be sure all voltages are connected prior to power up.

b. Turn power ON to the board.

CAUTION
THE POWER DOWN SEQUENCE IS THE REVERSE OF THE ABOVE
POWER UP SEQUENCE AND IS EQUALLY IMPORTANT.

After power on, the system should initialize itself and print on the terminal:

TUTOR 1.X >

2-14

TERMINAL
«“DUMB”
*RS232C COMP.

l«————— SEE NOTE #1

TO HOST
OR MODEM

SEE NOTE #2

AUDIO
CASSETTE §
RECORDER :;;;

MEX68KECB

SEE NOTE #3 /———‘

BANANA JACK
CABLES

PRINTER

d
99

POWER SUPPLY

NOTES: 1. USE MOTOROLA CABLE M68RS232M OR M68RS232F OR MAKE CUSTOM.
2. MAKE CUSTOM CABLE.
3. USE MOTOROLA CABLE MEX68PIC OR MAKE CUSTOM.

FIGURE 2-9. Expanded System Configuration with Options

2-15

It is now ready for operation under control of the firmware as described in
Chapters 3 and 4. 1If this response does not appear on the terminal, perform the
following system checks:

a. Press the black reset button to guarantee that the board has been
initialized properly.

b. Check that the terminal and board are set for the same baud rates.

c. If the baud rates are set properly and the terminal is still not reacting
properly, the terminal may require special null characters and formatting
from the educational computer. The Port Format (PF) command can be used
to set the required ACIA format (see Paragraph 3.5.21 and Appendix B).

2.5 PREPARATION FOR USE OF SYSTEM OPTIONS

The MC68000 Educational Computer Board can use options of a Centronics-
compatible printer, audio cassette storage, and a link to a host computer.
Figure 2-9 shows the expanded system configuration with these options. The
following paragraphs describe preparation for use of each option.

2.5.1 Printer Option

The board is properly buffered to directly drive a Centronics-compatible
printer. The Port 3 edge connector Jl must be connected via cable to the
user-supplied printer. This cable is available from Motorola, Part Number

MEX68PIC.

The user may desire to“manufacture this cable, although it is a more complex
assembly than just flat ribbon cable and connectors. Resistors are used on the
cable to help protect unbuffered inputs from damage due to static discharge.
Figure 2-10 shows the interconnection diagram of the cable and lists suitable
connector part numbers. Note that the cable can be keyed on the card edge
connector to prevent incorrect cable connection.

2-16

ue1beTq UOTIOPUUODISIUT STQRD I93UTAd 0T~z FUNOIL

HYOLO3INNOD 3903 gHYD Nid 05

>
L000-SLVEH WE = Q QND 01 Q3103INNOD
‘ATdANVYX3 - M nNu 6v B St ‘Iv ‘L '€ SN1d SNId N3A3 11V 310N
3 S £ >
m (] n] - B~
o b] H > b] M (=] o [=) o [=]] @] o
222 2 5 2 3 5252 B2dgjojeigfezezeZes
ooo s 2 S5 9 1&mg mZwegrizirdirzizZzszzZx
1 6 S | 61 £2 4 17 v 9z 8 0 2 vE 9¢ g8 OF
L £ L SE 02 12 g L v ey Sz L2 62 Il €6 S€ £ 62
) 4 4)
é
SWHO Y01 SHOLSIS3d 11V
62 4} 2€ 1e oL 8 6 8 L 9 S v € z
L et (113 : 14 6L L2 92 Sz vz gz T 2 o

09€01-25# HONID
€1-09€0L-2S# TONIHIWY
‘31dAVX3

HOLO3INNOD 9nN'1d NOS8IY LS SIHIS LOVINOD 9¢

378v0
Nog8gid Ly1d
HOLONANOD-0S

2-17

The cable is connected to Port 3 (connector Jl), as shown in Figure 2-11, with
the other end going to the printer.

TO PRINTER
RED STRIPE

(PIN #1) ///———~\\\\‘_‘//4
mN;\\\\\\N\

CABLE

);; - J1 WJS u q:‘l L\

MEX6BKECB

FIGURE 2-11. Printer Cable Connection to MEX68KECB

2.5.2 Host Computer (Modem) Option

A second serial RS-232 port, Port 2 connector J4, is provided to interconnect
into a host computer directly or by modem. Preparation similar to serial Port 1
is required — that is, program the baud rate and prepare a cable.

Again referring to Figure 6-4, the modem or host connected to Port 2 must assert
CTS (clear to send) before information can be transmitted via Port 2. RTS is
asserted by the ECB when power is applied to the board. DTR is asserted as part

of the ECB power-up/reset firmware.

2.5.2.1 Selecting Host Baud Rate. As with the terminal baud rate, the host
serial port is wired to transmit and receive at the same baud rate. The desired
baud rate is selected via a plastic cap jumper positioned on header J9, as shown
in Figure 2-12. Also reference Figure 2-4 for the interconnection diagram and
Table 2-1 for the selected baud rate.

2-18

PLASTIC CAP JUMPER
IS POSITIONED TO

SHORT PINS FOR 99 BAUD RATE
DESIRED BAUD RATE
(9600 SHOWN)
1 2 9600
3l o o |a 4800
5| O O |6 2400
7l o o |s 1200
sl o o |10 600
n|l o o |12 300
B3|l o o1 150
5| 0o o 1. 110

FIGURE 2-12., Host Baud Rate Select Jumper (J9)

Again similar to the terminal port, to provide different baud rates, the
connection between TXC and RXC for ACIA2 must be cut (reference Figure 2-4) and
individual baud rates connected to each. Perform the following steps to select
separate transmit and receive baud rates for the host port:

a. Cut the signal trace located between Pin 1 and Pin 2 of header J7 on the
back side of the printed circuit board. BE CAREFUL -- be sure to cut the
correct trace; it is approximately 1/8 inch long.

b. The transmit baud rate (TXC) is selected by using the plastic jumper cap
on header J9 in accordance with Table 2-1.

c. The receiver baud rate (RXC) is selected by wire-wrapping Pin 2 of header
J7 to the desired even numbered pin of header J9. Again, use Table 2-1
to determine the correct pin.

2-19

2.5.2.2 Cable Connection. The same cables referenced in paragraph 2.3.1 can be
used with the host serial port. As before, the cable can be either purchased or
manufactured with the components referenced in Figure 2-7. The card edge
connector can also be keyed. Figure 2-13 shows the host computer serial port
cable signal line connection.

25 PIN “D” SUBMINIATURE CONNECTOR

[=]
Zz
(&
g g 2
< < z
o [=] [70] [I} o
x x = [&
[o« [+ o (7] o
1 2 3 4 5 6 7 8 9 10 1" 12 13
\14 156 16 17 18 19 20 21 22 23 24 25

RED
<. \
v

NOT CONNECTED

1 3 5 7 9 11 13 15 17 19
27 47 6 8. 107 12 - 1% /J 187 207

20 PIN CARD EDGE CONNECTOR

FIGURE 2-13, Host Cable Signal Line Connections

The suitable cable is connected to Port 2 (connector J4), as shown in
Figure 2-14, with the other end going to the host computer or modem.

2—-20

TO HOST
RED STRIPE

(PIN #1) -
\ CABLE
PIN 1 /

— ! Y . T

N J2

MEX68KECB

FIGURE 2-14. Host Computer Cable Connection to MEX68KECB

2.5.3 Audio Cassette Option

An audio cassette player can be used for data storage with MEX68KECB. Two
signal lines plus ground must be connected to the cassette player from Port 4,
connector J2. The user must make a custom cable suitable for the tape player
used. Figure 2-15 shows a typical configuration. The educational board
requires a 20-pin card edge connector, and a cassette recorder typically uses
miniature phone plugs. The "DATA OUT" signal line from the board is connected
to the AUXILIARY input to the cassette recorder (or the microphone input if no
auxiliary input is available; see Chapter 6 for more details). The "DATA IN"
signal line from the board is connected to the EARPHONE output of the recorder,
The optional key is located between positions 13 and 15.

2-21

w

4

g z

& = CASSETTE

P 3 RECORDER

w <L
| - e |
e o _

A A

TYPICALLY MINIATURE
() () “ PHONE JACKS
5

=z o

< al & o

2| z| 5] 2

3l ol 8|l o

NOT USED
A\
~
RED 2»
1 3 5 7 9 11 13 15 17 19
2) 4~ s) 8~ 107 12) 14) 167 187 207

20 PIN CARD EDGE CONNECTOR

NOTE: All even pins are ground.

FIGURE 2-15A. Cassette Recorder Cable Signal Line Connection

2-22

CONNECTORS
REQUIRED
BY CASSETTE

> RECORDER
(TYPICALLY
MINIATURE

PHONE PLUGS)

CUT CABLE BACK

. /

(OPTIONAL)

20 CARD EDGE CONNECTOR
PART #'S:

1. AMP #88373-6

2. ANSLEY #609-2015 M
3. BERG #65764-002

4. 3M #3461-0001

FIGURE 2-15B. Cassette Recorder Cable Detail

2-23

The cable is then connected to Port 4 (connector J2), as shown in Figure 2-16,
with the other end going to the recorder.

TO CASSETTE RECORDER
RED STRIPE

(PIN #1) N
\ CABLE
PIN 1 /

/_I” J2u J-“B U .IJJ4]\

J1

MEX68KECB

FIGURE 2-16. Cassette Recorder Cable Connection to MEX68KECB

2-24

CHAPTER 3

USING THE MONITOR/DEBUG FIRMWARE

The MC68000 Educational Computer Board has a resident firmware package that
provides a self-contained programming and operating environment. The firmware,
aptly named "TUTOR", provides the user with monitor/debug, assembly/disassembly,
program entry, and I/0 control functions. Chapter 3 is a how-to—use description
of the TUTOR package, including user interface and the command structure.
Chapter 4 provides a detailed discussion of the assembler/disassembler functions
called by the TUTOR firmware.

Page

WHAT IS TUTOR? ececocccccccasoesssssccscssasssssasssasssenssens 33
OPERATIONAL PROCEDURE «eeoeococvcscocsocsssosssscsscassscsasses 3—4
System TUIN=ON .eeceocvovscscssasscsscssosssscscssssscssosccses 3—4
System Initialization seeeeeecscscsssccscsasccscececococesecese 3—4
RESET BULLON secesccescssocvacssscsasscsssssscsssossssssees 37O
ABORT BULLON ceececococcsccocscsssssssssoscsssesasssssscsscns 3=
USEr PrOgraM ceeeeescocesaccssccssssssscsssssssossseosssossscs 37D
System Operation ceeeeeeecescsscsccccsssssssscssescsccesscses 37D
TERMINAL CONTROL CHARACTERS ceececcooscssscasccsacsossanssasasees 3—0
COMMAND LINE FORMAT .cecevoveccvcscsccscssanscsscscsscasescssse 3—0
EXpression as a Parameter ..ceeesecscescscsssccccscscsscscsscss 3=/
Address as Q PArameterl seecesescesscsssccccsscsssssecscscsass 3=/
AdAress FOIMALS ceeeeoesescnssssscscsscsccssossssscsassccscses 3=/
OffsSet REgIStErS ceevserercecscssscscsssscsesasssssasscases 3-8
Command EChO BACK seeeescecvscsssssassscosscssossssssssesssseces 3-8
TUTOR COMMAND SET vecovecccccccoscscsccsscssssssasssssasssascess 3—9
BF — Block Memory Fill .eeeeeescacessscssescessoscosasccscsss 3-11
BM — BlOCK MOVE cecoveccosscosscssesssosssnasssscosasoosssccses 3—12
BR - Breakpoint secececececsscscsscscsscssossescssssssssssocss 3-13
BS — Block Of Memory SearCh seececsecscecceccscssessscscccsses 3—14
BT — Block Of MEMOIY TESt secevecscsscssssccscscacscscssssess I-15
DC — Data CONVEIrSION seceecccccscocsasssssssscssscssssscsases 3—16
DF - Display Formatted RegiSters ...ececesescscscscccccccsees 317
DU - Dump Memory (in S—-Record FOIMAt) .eecececcescsscscsessss 3—18
GD - Go Direct Execute Program seeecesesesescscscsccscscscses 3~19
GO — EXecute PrOJraM .eeeeceveccscevsossscssscsossesscocssscsss 3—20
GT - GO Until BreakpoiNt seeeecescesescescssosscscsssssessess 321
HE = HEIP eevecesccescccoccacssrsacsssacoscscesesssnsessasesses 3—22
LO — Load (in S-Record FOIMAL) .eeeeececscscosscssssssssessass 323
MD ~ MemOry DiSPlay cececeessscssscssssecescccscscsssscssssss 3—24
MM — Memory MOAifY cecececseocscccscssssssessosssssccscssscasee 3—25
MS — MEMOLY SEL teveeeecssacsrcoaassscasssscesscscsssnsscsces 328
NOBR — Remove Breakpoint ceeeecescceescssssssscsssssscscsecsse 3—29
NOPA — Reset Printer Attach .eceeecececcsccascscssscescsssses 3—30
OF — OFffSet vseeecesovecsccacacessancscsccscsssssasessssscssases 3-31
PA — Printer AttacCh ceecevecceccssccccccssossscscssssccsscess 332
PF — POIt FOIMAL cceevocoscscscoscnsssssscasessesscssssssssese 3—33
.Rx - Individual Register Display/Change ...ceccocecesscceeee 3-35
TM ~ Transparent MOGE ceeeeeescvsccssssssssscssssssssssssesse I—30
TR — TILACE seeevocrcsvosccsscsacsssossssrsascnssssscsssnessess 3—38
TT - Trace to Temporary Breakpoint ..eeesescecesccessccssscsse 3—39
VE - Verify (in S—Record FOIMAt) seeeccesscssccssccsscessesss 3—40
COMMAND SUMMARY AND MESSAGES ecececcsccsccscosssssssessscsscsss 3-41

® o & o o & s s ° s
B WD DN
. ¢« & o s o =
WNNNDND -
* o o
W N

.
N =

e o o o o o e
« o o o .
WD+
.

NNNDNNNNNNFRE AR OOIOUD WN -

AN WNHFROWOWOJOUTdWNDHO

* o & © o * o & o .
Uit TUVTULTCTL LU0 U DD
e o o o o o o & o

WWWWwWWwWwWuwWwwuwwwwwwWwwWwWwwwWwwwwuWwwwwwuwwwwwwwwwwww

3-1

EXECUTE
COMMAND
FUNCTION

!

NO

FIGURE 3-1.

COMMAND

LINE INPUT
FROM

TERMINAL

NO

YES

DOES

COMMAND LINE

CAUSE USER PROGRAM
EXECUTION

YES

JUMP TO USER
PROGRAM AND
BEGIN
EXECUTION

Flow Diagram of TUTOR Operational Mode

3-2

CHAPTER 3

USING THE MONITOR/DEBUG FIRMWARE

3.1 WHAT IS TUTOR?

TUTOR is the resident firmware package for the MC68000 Educational Computer
Board. The 16K-byte firmware (stored in two 8Kx8 ROM or EPROM devices) provides
a self-contained programming and operating environment. TUTOR interacts with
the user through pre-defined commands that are entered via the terminal. The
commands fall into four general categories:

a. Commands which allow the user to display or modify memory.

b. Commands which allow the user to display or modify the various internal
registers of the MC68000.

c. Commands which allow the user to execute a program under various levels
of control.

d. Commands which control access to the various input/output resources on
the board.

An additional function called the TRAP 14 handler allows the user program to
utilize various routines within TUTOR. The TRAP 14 handler is discussed in
Chapter 5.

The operational mode of TUTOR is demonstrated in Figure 3-1. After system
initialization, the computer waits for a command line input from the user
terminal. When a proper command is entered, the operation continues in one of
two basic modes. If the command causes execution of a user program, the TUTOR
firmware may or may not be re—entered, depending on the discretion of the user.
For the alternate case, the command will be executed under control of the TUTOR
firmware, and after command completion, the system returns to a waiting
condition. During command execution, additional user input may be required,
depending on the command function.

The command format and syntax are similar to other Motorola products based on
the MC68000. This is done so that a large relearning effort is not required
when the user utilizes these other products.

3.2 OPERATIONAL PROCEDURE
CAUTION
POWER SUPPLIES MUST BE TURNED ON AND OFF 1IN PROPER

SEQUENCE TO AVOID DAMAGE TO THE DYNAMIC RAM DEVICES.
FOLLOW THE TURN-ON INSTRUCTIONS TO PREVENT PROBLEMS.

System turn—-on and initial operation are described in detail in paragraph 2.4.
This information is repeated here for convenience and to prevent possible
damage.

3.2.1 System Turn—On

To power—up with individual power supplies:

a. All cables should be connected, making sure ground is connected common to
all power supplies.

b. Turn on -12,0 Vdc.
c. Turn on +12.0 Vdc.
d. Turn on +5.0 vdc.
Alternatively, if a single multivoltage supply is used, then:
e. Be sure all voltages are connected prior to power—-up.

f. Turn power ON to the board.

3.2.2 System Initialization

The act of powering up the board will initialize the system., The processor is
reset and TUTOR is invoked. After initialization, the terminal will print:

TUTOR 1.X >
where "X" is the revision number of the software.
NOTE

If this response does not appear, system checks may need
to be performed as described in paragraph 2.4. The most
common problem is that the terminal and board are not set
up for matching baud rates. Also, slower terminals such
as T.I. 700 series devices can have special requirements,
which are discussed in Appendix B.

Other means can be used to re-initialize the Educational Computer Board
firmware. These means are discussed in the following paragraphs.

3.2.2.1 RESET Button. RESET is the black button located on the lower edge of
the board. Depressing this button causes all processes to terminate, resets the
MC68000 processor and MC68230 PI/T, and restarts the TUTOR firmware. Pressing
the RESET button should be the appropriate action if all else fails.

3.2.2.2 ABORT Button. ABORT is the red button located next to the RESET button
at the lower edge of the board. The abort function causes an interrupt of the
present processing (a level 7 interrupt on the MC68000) and gives control to the
TUTOR firmware. This action differs from reset in that no processor register or
memory contents are changed, the processor and peripherals are not reset, and
TUTOR is not restarted. Also, in response to depressing the ABORT button, the
contents of the MC68000 internal registers are displayed.

The abort function is most appropriate when software is being debugged. The
user can interrupt the processor without destroying the present state of the
system,

3.2.2.3 User Program. The user can return control of the system to the
firmware by recalling TUTOR via his program. Instructions can be inserted into
the user program to call TUTOR via THE TRAP 14 handler. See Chapter 5.

3.2.3 System Operation

After system initialization or return of control to TUTOR, the terminal will
print:

TUTOR 1.X >
and wait for a response.

The user can call any of the commands supported by the firmware. A standard
input routine controls the system while the user types a line of input. Command
processing begins only after the line has been entered, followed by a carriage
return,

NOTES

1. The user memory is located at addresses $000900-S007FFF.
wWhen first learning the system, the user should restrict
his activities to this area of the memory map.

2. If a command causes the system to access an unused
address (i.e., no memory or peripheral devices are located
at that address), a bus trap error will occur. This results
in the terminal printing out a trap error message and the
contents of all MC68000 registers. Control is returned to
the TUTOR monitor. A bus trap error also occurs if the
system attempts to write to ROM.

3~5

3.3 TERMINAL CONTROL CHARACTERS

Several keys are used as command line edit and control functions. It is best to
be familiar with these functions before exercising the system. The functions
include:

a. Delete (rubout) key or CTRL H - will delete the last character entered on
the terminal.

b. CTRL X - will cancel the entire line.
c. CTRL D - will redisplay the entire line.

d. RETURN (carriage return) - will enter the command line and cause
processing to begin.,

e. CTRL W - will suspend system output to the terminal. To resume output to
the terminal, any other character can be entered.

f. BREAK - will abort commands that do any console I/0 and return to the
input routine.

For characters requiring the control key (CTRL), the CTRL should be pushed and
held down and then the other key (H, X, D, or W) should be pushed.

These control characters are summarized with the command set in Table 3-2.

3.4 COMMAND LINE FORMAT
The command line format is:
TUTOR 1.X > [NO]J<command> [<parameters>] [;<options>]
where:
TUTOR 1.X > 1Is the prompt from the educational computer generated by TUTOR.
NO Is the negative form (opposite) of primitive command.
command Is the primitive command.

parameters Are separated by spaces and can be of the form <expression> or
<address>.

options Multiple options may be selected.
NOTES

1. The command line format is defined using special characters
which have the following syntactical meanings:
[1 Enclose optional fields.
< > Enclose a syntactical variable.
These characters are not entered by the user, but are for
definition only.
2. Fields are separated by one or more spaces used as a delimiter.

3-6

The basic command form consists of the primitive command field and the
parameters field, although some primitives do not require parameters. The
additional command negation and options fields can modify the primitive command.

If an option exists for a command, a semicolon (;) plus <options> field(s) are
added to the command. Thus, several extensions can be provided to the user.

3.4.1 Expression as a Parameter

An <expression> can be one or more numeric values separated by the arithmetic
operators plus (+) or minus (-). Numbers are assumed hexadecimal except for
those preceded by an ampersand (&), which are decimal. In the assembler,
numbers are assumed decimal unless preceded by a dollar sign ($).

3.4.2 Address as a Parameter

Many commands use <address> as a parameter. The syntax accepted by TUTOR is the
same as that accepted by the assembler, plus a memory indirect mode. Also,
contained within TUTOR are eight offset registers designated R0O-R7. These
registers are software registers only, and are provided for relocatability of
code.

3.4.2.,1 Address Formats.

FORMAT EXAMPLE DESCRIPTION

expression 140 Absolute address (NOTE: offset zero is added)

expressiontoffset 130+R5 Absolute address plus offset five (not an
assembler—accepted syntax)

expressiontoffset 150+R7 Absolute address (NOTE: offset seven is always
zero; not an assembler-accepted syntax)

(A@) (A5) Address register indirect

(AQ,DQ) (A6 ,D4) Address register indirect with index

(A@,AQ)

expression(A@) 120 (A3) Register indirect with displacement

expression(A@,D@) 110(A2,D1) Address register indirect with index plus

expression(aA@,AQ) displacement

[expression] [100] Memory indirect (not an assembler-accepted
syntax)

3-7

3.4.2.2. Offset Registers. Eight software registers (not actually hardware
configured) are used to modify addresses contained in TUTOR commands. The first
seven registers (.R0-.R6) are used as general-purpose offsets, while .R7 (the
eighth register) is always zero. The contents of the registers can be displayed
by the Offset command (OF), paragraph 3.5.19, and modified by the .RX command,
paragraph 3.5.22.

The offset registers are always reset to zero at power—-up or by activating the
reset button. Thus, if their contents are not changed, the registers will have
no effect on the entered address.

Unless another offset is entered, each command that expects an address parameter
automatically adds offset R0 to the entered address -- that is, if RO = 1000,
then the following commands are the same:

BR 10
BR 10+RO

The physical address for each of these commands is 1010.

Offset RO is automatically added to the offset registers any time they are
modified. The only exception to this is when another offset register is
specifically added. Offset registers are set to zero by adding R7 (always zero)
to zero,

Example:
.RL 8 Rl = 8 Offset RO is zero, Rl is set to 8
R0 100 RO = 100
.RO 200 RO = 200+100=300 Offset RO added
.R3 100+R1 R3 = 100+8=108 Offset RO not added
RO O+R7 RO =0 RO set to zero

3.4.3 Command Echo Back

Most commands that require parameters display back to the user the information
entered, but in a physical format so that the user sees the expression or
address results. Some error checking is done -~ for example, if an address will
cause an obvious error, the message INVALID ADDRESS=XXXXXXXX will result on the
terminal connected to serial port 1. Refer to Table 3-3 for the error messages
and other messages used in TUTOR.

3-8

3.5. TUTOR COMMAND SET

Table 3-1 lists the TUTOR commands by type.

TABLE 3-1. TUTOR Commands

COMMAND MNEMONIC DESCRIPTION PAGE
MD Memory Display 3-24
MM, M Memory Modify 3-25
MS Memory Set 3~-28
A0 - A7 Display/Set Address Register 3-35
D0 - .D7 Display/Set Data Register 3-35
.PC Display/Set Program Counter 3-35
.SR Display/Set Status Register 3-35
.SS Display/Set Supervisor Stack Pointer 3-35
.Us Display/Set User Stack Pointer 3-35
DF Display Formatted Registers 3-17
OF Display Offsets 3-31
.RO - .R6 Display/Set Relative Offset Register 3-31
BF Block of Memory Fill 311
BM Block of Memory Move 3-12
BT Block of Memory Test 3-15
BS Block of Memory Search 3-14
DC Data Conversion 3-16
BR Breakpoint Set 3-13
NOBR Breakpoint Remove 3-29
GO, G Go 3-20
GT Go Until Breakpoint 3-21
GD Go Direct 3-19
TR, T Trace . 3-38
TT Temporary Breakpoint Trace 3-39
PA Printer Attach 3-32
NOPA Reset Printer Attach 3-30
PF ' Port Format 3-33
™ Transparent Mode 3-36
* Send Message to Port 2 —
HE Help 3-22
DU Dump Memory 3-18
LO Load 3-23
VE Verify 3-40

Each of the individual commands is described in the following pages. Figure 3-2
shows the general format of the description.

3.4.X Command Title / XX

(Command mnemonic)

[NO] <command> [<parameters>] [;<options>]

/

(General command format)

r
(Command description)
-
(Examples)
NOTE

User inputs are underscored for clarity only;

i.e., no underscore is typed in actual input.
b

FIGURE 3-2. Command Description Format

3-10

3.5.1 Block of Memory Fill BF
BF <addressl> <address2> <word>

The BF command fills memory starting with the word boundary (even address)
<addressl> through <address2>. Both <addressl> and <address2> must be even
addresses. This command only fills with a word-size (two-byte) data pattern, as
specified in hex, octal, decimal, or binary digits. If an entire word size data
pattern is not entered, the pattern is right justified and leading zeros are
inserted.

EXAMPLE

TUTOR 1.X > MD 2004
002004 17 39 2A 33 BF FF 00 9E 41 42 55 CD C4 44 00 98 .9*3?...ABUMDD..

TUTOR 1.X > BF 2004 200A 475A
PHYSICAL ADDRESS=00002004 0000200A

TUTOR 1.X > MD 2004
002004 47 5A 47 5A 47 SA 47 SA 41 42 55 CD C4 44 00 98 GZGZGZGZABUMDD..

TUTOR 1.X > BF 2004 2012 7
PHYSICAL ADDRESS=00002004 00002012

TUTOR 1.X > MD 2004
002004 00 07 00 07 00 07 00 07 00 07 00 07 00 07 00 07 .ecvcececscccocs

TUTOR 1.X >

3-11

3.5.2 Block Move BM

BM <addressl)> <address2> <address3>

The BM command is used to move (duplicate) blocks of memory from one area to
another.

<addressl> = beginning address of source memory block

<address2> = ending address of source memory block

<address3> = beginning address of destination memory block
EXAMPLE 1
TUTOR 1l.X > BM 1800 1900 1860 The entire block from $1800 through $1900
PHYSICAL ADDRESS=00001800 00001900 is duplicated, starting at $1860.
PHYSICAL ADDRESS=00001860
TUTOR 1.X >
EXAMPLE 2

TUTOR 1.X > MD 1800 10
001800 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF .."3DUfw..*;L]n.

TUTOR 1.X > BM 1806 1809 1804
PHYSICAL ADDRESS=00001806 00001809
PHYSICAL ADDRESS=00001804

TUTOR 1.X > MD 1800 10
001800 00 11 22 33 66 77 88 99 88 99 AA BB CC DD EE FF .."3fw....*;L]n.

TUTOR 1.X >

312

3.5.3 Breakpoint BR
BR [<address>[;<count>]]...

When encountered, a breakpoint causes program execution to stop and control to
be transferred to TUTOR. The BR <address> command sets one or more addresses
into the breakpoint address table. This table can hold up to eight breakpoint
addresses. Multiple breakpoints (up to eight) may be specified with one call of
the breakpoint command. Addresses should be on even word boundaries. The range
of <count> is a 32-bit integer.

The breakpoints are inserted into the user program when execution is called via
a GO or GT commnand. The illegal instruction $4AFB is inserted at the addresses
specified by the table. During execution of the program, a breakpoint occurs
whenever this instruction is encountered. If program control is lost, control
can be regained via the RESET or the ABORT button. ABORT is preferred because
use of the RESET function may leave breakpoints ($4AFB) in the user program,
whereas ABORT will recover properly.

The NOBR command is used to eliminate all breakpoints from the breakpoint table.

While executing a Trace command, the breakpoint addresses are monitored (i.e.,
the illegal instruction $4AFB is not placed in memory).

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > BR Display all breakpoints.

TUTOR 1l.X > BR address Set a breakpoint.

TUTOR 1.X > BR address;count Set a breakpoint with a count. Count is
decremented each time the breakpoint is
encountered until count = 0. Execution

stops as soon as count is decremented to
zero. Thereafter, execution will stop
each time the breakpoint is reached.

See also: GT, NOBR, TT
EXAMPLE

TUTOR 1.X > .R4 4000
TUTOR 1.X > BR 1010 2000;5 2040 4000

BREAKPOINTS

001010 001010
002000 002000;5
002040 002040
000000+R4 004000

TUTOR 1.X > NOBR 1010 2040

BREAKPOINTS
002000 002000;5
000000+R4 004000

TUTOR 1.X > NOBR
BREAKPOINTS

TUTOR 1.X >
3-13

3.5.4 Block of Memory Search BS

BS <addressl> <address2> 'literal string'
BS <addressl> <address2> <data> [<mask>] [;<option>]

The BS command has two modes: 1) literal string search, and 2) data search.
Both modes scan memory beginning at <addressl> through <address2>, looking for a

match.

The literal string mode is initiated if a single quote (') follows <address2>.
If a single quote does not follow <address2>, data search mode is assumed. In
the data search mode, the optional mask, if used, is ANDed to data. The default
mask is all one's. The options supported are:

;B byte
:W word
;L long word

The default is byte.

In both modes of the BS command, if the search finds matching data, the data and
the address(es) are displayed. If the search is in data search mode with a
mask, and data is found that matches the data after the mask is ANDed, the data
from memory before applying the AND mask is displayed.

EXAMPLE COMMENT
TUTOR 1.X > MD 1FF0O 15

001FF0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ssceeeevscccccse
002000 43 43 45 45 00 00 00 00 00 00 00 00 00 00 00 00 CCEE:ceseseccoccss

TUTOR 1.X > BS 1FF0 200F 'CC' Successful search for literal
PHYSICAL ADDRESS=00001FF0 0000200F string 'CC'.

002000 ‘'ccC'

TUTOR 1.X > BS 1FF0 200F 34 ;W Unsuccessful search for word
PHYSICAL ADDRESS=00001FF0 0000200F length data (with default mask).
TUTOR 1.X > BS 1FF0 200F 03 OF Successful search for byte
PHYSICAL ADDRESS=00001FF0 0000200F length data, with four most
002000 43 significant bits masked.

002001 43

TUTOR 1.X > BS 1000 7FFE 4AFB;W Successful search for "leftover"
PHYSICAL ADDRESS=00001000 00007FFE breakpoints.

001000 4AFB

TUTOR 1.X >

3-14

3.5.5 Block of Memory Test BT
BT <addressl> <address2>

The BT command is a destructive test of a block of memory beginning at
<addressl> through <address2> inclusive (both at word boundaries = even
addresses) . If this test runs to completion without detecting errors, the
memory tested will be set to all zeros.

This command may take several seconds to test large blocks of memory.

If memory problems are found, a message is displayed indicating the address, the
data stored, and the data read of the failing memory.

EXAMPLE

TUTOR 1.X > BT 5000 S5FFE
PHYSICAL ADDRESS=00005000 O000SFFE

TUTOR 1.X > BT 6000 6040
FAILED AT 6000 WROTE=FFFE READ=FF00

3-15

3.5.6 Data Conversion DC
DC <expression>

The DC command is used to convert an expression into hexadecimal and decimal.
The expression may be entered in hexadecimal, decimal, or mixed format; output
will be shown both ways. Default input format is hexadecimal.

Offsets may be used with the DC command. RO is used if the offset is not
specified.

This command is useful in calculating displacements such as destination of
relative branch instructions or program counter relative addressing modes.

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > DC $data Convert hexadecimal data into hexadecimal and
decimal.

TUTOR 1.X > DC &data Convert decimal data into hexadecimal and decimal.

EXAMPLE

TUTOR 1.X > DC &120
$78=8120

TUTOR 1.X > DC &15+54-$13
$0=&0

TUTOR 1.X > DC -1000
SFFFFF000=-$1000=-&4096

TUTOR 1.X >
TUTOR 1.X > .RO 1000

TUTOR 1.X > OF

R0=00001000 RI=00000000 R2=00000000 R3=00000000
R4=00000000 R5=00000000 R6=00000000 R7=00000000

TUTOR 1.X > DC _10+10+30
$1050=&4176

TUTOR 1.X > DC 10+10+30+R7
$50=&80

3-16

3.5.7 Display Formatted Registers DF

DF

The DF command is used to display the MC68000 processor registers. The trace
display will be displayed whenever the debugger gains control of the program
execution —- i.e., at breakpoints and when tracing.

Note that any single register can be displayed with the .Ax, .Dx, etc.,
commands.

See also: .Rx (contains forms .Ax, .Dx, etc.)

EXAMPLE

TUTOR 1.X > DF
PC=00001000 SR=2700=.57..... US=00002000 SS=00000F00

DO=FFFFFFFF D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 A1=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001000 0C000030 CMP.B #48,D0

NOTE

Any time the registers are displayed, a disassembled line
of code is also displayed (see Chapter 4 for format). The
instruction located at the address pointed to by the
program counter (example, $001000) is disassembled and
shown. This is useful for program debugging.

3-17

3.5.8 Dump Memory (in S—-Record Format) DU
DU[<port number>] <addressl> <address2> [<text..>]

The DU command outputs S-records of memory contents from <addressl> through
<address2> to <port number>. Any optional text is output as part of a header
record.

S-records are a standard data format used in transmitting and receiving programs
and data. Appendix A discusses them in more detail. As part of the memory
dump, any text goes out as an SO or header record, and transmission ends with an
S9 end-of-file record.

The DU command has several options, including dump to Ports 1, 2, 3, and 4.
Also a default case of DU dumps to Port 1. The variations include:

COMMAND PORT # DESTINATION
DU Port 1 Terminal
DUl Port 1 Terminal
DuU2 Port 2 Host (modem)
Du3 Port 3 Printer
DU4 Port 4 Audio Cassette

This command does not send control characters to start or stop I/0 devices. The
offset contained in offset register R0 is added to the starting and ending

memory addresses.

See also: L0, VE

EXAMPLE

TUTOR 1.X > DU 8800 880F TUTOR 1l.X
PHYSICAL ADDRESS=00008800 0000880F
S00C00005455544F5220312E587E
S11388006654BBCE6704610013521E3C004447F813
S9030000FC

TUTOR 1.X > DUl 8800 880QF

PHYSICAL ADDRESS=00008800 0000880F
S0030000FC
S11388006654BBCE6704610013521E3C004447F813
S9030000FC

TUTOR 1.X > DU4 7000 70FF S—records are dumped to
" PHYSICAL ADDRESS=00007000 000070FF Port 4 (tape recorder)

TUTOR 1.X >

3-18

3.5.9 Go Direct Execute Program GD
GD [<address>]

The GD command is similar to the GO command, except that GD does not set
breakpoints, nor does it start by tracing one instruction. The GD command
starts the target program at the location given as address without changing any
of the exception vectors (locations $0 through $3FF). If address is not
specified, the GD command starts the target program at the address in the PC.

See also: GO, GT
EXAMPLE

TUTOR 1.X > GD 2000
PHYSICAL ADDRESS=00002000

3-19

3.5.10 Execute Program GO

GO [<address>]
G [<address>]

The GO command causes the target program to execute (free run in real time)
until:
a. the target program encounters a breakpoint,

b. abnormal program sequence that causes exception processing (e.g., divide
by zero), or

c. operator intervention through the RESET or ABORT pushbutton switch.
NOTE
If breakpoints with count are encountered, real time is not achieved.

The breakpoint will not stop processing until Count is diminished to
zero, but processing overhead is required.

The GO sequence starts by tracing one instruction, setting any breakpoints, and
then free running.

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > GO Begin execution at address in PC.

TUTOR 1.X > GO address Set PC = address and begin execution at that
address.

See also: BR, DF, GD, GT, TR, TT

EXAMPLE

TUTOR 1.X > MM 2000;L
002000 00002F00 23000.

TUTOR 1.X > GO [2000] Address is memory indirect.
PHYSICAL ADDRESS=00003000

3-20

3.5.11 Go Until Breakpoint GT
GT <breakpoint address>

The GT command performs the following:
1. sets a temporary breakpoint,
2. sets breakpoints entered by the BR command,
3. sets target program registers as displayed by the DF command,

4, causes the target program to execute from the PC address (freé run in
real time).

When any breakpoint is encountered, the temporary breakpoint is reset.
If the breakpoint address is in the breakpoint table, the message ERROR and the
breakpoint table are displayed.

See also: BR, DF, GD, GO, TR, TT

EXAMPLE

TUTOR 1.X > BR 2010 3000

BREAKPOINTS
002010 002010
003000 003000

TUTOR 1l.X > DF

PC=00002000 SR=A704=TS7..Z.. US=FFFFFFFF SS=000007BC

DO=FFFF1230 D1=00101200 D2=FED01210 D3=00000000

D4=FFFF0031 D5=FFFFFF2C D6=00000002 D7=00000000

A0=00010040 Al=FFFFFFFF A2=00000454 A7=0000054E

A4=00009F38 A5=0000053A A6=0000053A A7=000007BC

002000 0C000030 cMP.B #48,D0

TUTOR 1.X > GT 2006
PHYSICAL ADDRESS=00002006
PHYSICAL ADDRESS=00002000

TUTOR 1.X > GT 2010 Temporary breakpoint address $2010 is
PHYSICAL ADDRESS=00002010 already in breakpoint table.
ERROR

002010 002010
003000 003000

3-21

3.5.12 Help
HE

The HE command gives the user information as to available commands.

EXAMPLE

TUTOR 1.X > HE
.PC .SR .US .SS

.D0 .D1 .D2 .D3. D4 .D5 .D6 .D7
A0 .Al .A2 .A3 .A4 .A5 .AG .A7
.RO .R1 .R2 .R3 .R4 .R5 .R6

BF BM BR NOBR BS BT DC DF
DU G GD GO GT HE LO M
MD MM MS OF PA NOPA PF T
™ TR T VE

3-22

3.5.13 Load (in S—-Record Format) LO
LO[<port number>] {;<options>][=text]

The LO command moves object data in S-record format from an external device
(Port 1, Port 2, or Port 4) to memory. Appendix A discusses S-records in more

detail.

The command has the basic forms:

COMMAND PORT # SOURCE
LO1 Port 1 Terminal (i.e., terminal with tape drive)
LO Port 2 Host (modem) -~ default port
LO2 Port 2 Host (modem)
LO4 Port 4 Audio cassette

The options include:

;-C Ignore the S-record checksum while loading. A checksum is contained
in each S-record. 1If this option is not selected, the received
checksum is compared with the calculated checksum. If they do not
agree, the message CHKSUM= and the calculated checksum are sent to
Port 1. The data is not loaded into memory if the checksums do not

agree,
iX Echo data read from the source port onto the Port 1 terminal.
The optional [=text] is used only with Port 2. The text following the "=" is

sent to Port 2. In this manner, a message can be sent to Port 2 to start a
download, as an example,

A timeout feature is available for Port 2. If the ‘host connected to Port 2 does
not respond within approximately 10 seconds, the message TIMEOUT is sent to Port
1 and the LO command is aborted.

Several characteristics of this command are important to note:

a. The offset contained within register RO is added to the addresses for the
data contained within the S-record.

b. Any record not containing an S0, S1, S2, S8, or S9 string is ignored.

c. If an error occurs, causing the system to print out an error message, one
or more lines sent during the error message may be ignored. The system
cannot be printing and processing incoming data at the same time. To
prevent the loss of information, the ECB can send characters to the host
to stop and start the transfer of the S-records. Paragraph 4.5.2
describes this feature.

See also: DU, OF, PF, VE

EXAMPLES COMMENT

TUTOR 1.X > LO ;X=COPY FILE.MX,#CN Download from Port 2 with echo
option.

TUTOR 1.X > LO;X-C=COPY FILE.MX,# Download from Port 2 without

verifying checksum,

3-23

3.5.14 Memory Display MD

MD[<port number>] <address> [<count>][;<options>]

The MD command is used to display a section of memory beginning at <address> and
displaying the number of bytes given as <count>. Two modes are used for the
data display -- that is, hex data (with equivalent ASCII) and disassembled form.

The command has the basic forms:

COMMAND PORT # DESTINATION
MD Port 1 Terminal - default Port
MD1 Port 1 Terminal
MD2 Port 2 Host (modem)
MD3 Port 3 Printer

For <count>, the default condition is 16 bytes when no option is specified and
one instruction or directive when the disassemble option is used.

Only one option is specified; therefore, only two output forms are used:

1. No option specified -- will display the data in hex and in equivalent
ASCII. Data is always displayed in groups of 16 bytes., If the count is
not on a 1l6-byte boundary, the next highest group of 16 will be
displayed, unless the count is on a l6-byte boundary plus one, in which
case the next highest group of 16 will not be displayed.

Once the MD command is entered, it will continue with the next 16 lines
of output each time a carriage return (CR) is entered. Any other command
exits MD and enters the new command.

2, :DI -- invokes the disassembler function. The data is displayed in the
disassembled format described in Chapter 4. Included in the instruction
display is the address of the opcode, hexadecimal instruction code,
instruction mnemonic, and operands. The MD command will display all
instructions whose op code is contained within the byte count.

See also: MM, MS

EXAMPLE

TUTOR 1.X > MD 1000 12

001000 0C 00 00 30 6D 28 OC 00 00 39 6E 10 02 80 00 00 ...0m(...9n.....
001010 00 OF 11 CO 10 38 1E 3C 00 E4 4E 4E 0C 00 00 41 ...@.8.<.dNN...A

TUTOR 1.X > MD 1000 12 ;DI

001000 0C000030 CMP.B #48,D0
001004 6D28 BLT.S $00102E
001006 0C000039 CMP.B #57,D0
00100A 6E10 BGT.S $00101C
00lo0C 02800000000F AND.L #15,D0

3-24

3.5.15 Memory Modify

MM <address> [;<options>]
M <address> [;<options>]

The MM command is used to display memory and, as required, modify data or enter
new data. The command has two basic forms:

a. Hexadecimal format -~ The standard form of the MM command displays the
address and data at that location. The size option (byte, word, and long
word) controls the number of bytes displayed for each address:

OPTION

- (default)

W
;L
;0
Y
;N

DESCRIPTION

Displays one byte

Displays one word (2 bytes)

Displays one long word (4 bytes)

Displays one byte; accesses only odd address bytes
Displays one byte; accesses only even address bytes
Do not verify; do not read data stored

NOTE: If multiple options are desired, a semicolon (;)

must pr

ecede each option.,

once entered, the MM command has several submodes of operation that allow
modification and verification of data. The subcommands are in the
format:

[<data>] (cr)
[<data>]” (cr)
[<data>]=(cr)
(<data>] . (cr)

See also: MD, MS

EXAMPLES

Update location and sequence forward.
Update location and sequence backward.
Update location and reopen same location,
Update location and terminate.

TUTOR 1.X > MM 2000;W
2200 ?FFFF

002000
002002
002004
002002
002004
002006
002006

TUTOR
004000
004002

2A07 ?DDDD

60FA ?EEEE"

DDDbD ?
EEEE ?
S5FFF ?AAAA:

AAAA

1.X > MM 4000;W;N

2555
234,

3-25

b.

1.

MM

;DI - This option invokes the disassembler/assembler function. The
address entered should be the starting address for an instruction (op
code) word. The instruction will then be displayed in disassembled form.
The disassembled format is described in Chapter 4.

The displayed instruction is followed by a question mark (?) that
indicates a new source line may be entered. If a new line is entered,
the instruction is immediately assembled, stored, and displayed. To
enter a new line, the following format is used:

? <sp> <operation field> <sp> <operand field>(cr)

where:
sp Is required because no labels are allowed and the
format matches the resident assembler.
operation field Is the MC68000 mnemonic or DC.W directive.
Sp Is a required delimiter.
operand field Is normally source and destination fields.
cr Enters new instruction.

The format is discussed in detail in Chapter 4.

Upon entry of the carriage return, the new instruction will overwrite the
old instruction and enter the new one. To exit the command, a period (.)
is entered immediately after the question mark, followed by a carriage
return.

NOTE

When inserting new instructions or modifying existing code,
the assembler may overwrite the following code. Care must
be taken by the programmer to take this factor into account.
When moving code, be aware that address vectors may change.

I1f an error is found in the new instruction, the new line is redisplayed
with an "X" immediately under the field suspected of causing a problem in
the assembler. The "X" is followed by a question mark to allow re—-entry
of the corrected souce line.

EXAMPLES

TUTOR 1.X > MM 3000;DI
003000 5555 SUBQ.W #2,(A5) ? MOVE.L AQ,Al

The assembler overwrites line 3000 and displays:

003000 2248 MOVE.L AQ,Al
003002 1211 MOWVE.B (Al),Dl ?

3-26

2. TUTOR 1.X > MM 3000;DI
003000 2248 MOVE.L AO0,Al ?
003002 6600E384 BNE.L $001388 ? MOVE.L AOAl
The assembler overwrites line 3002 and displays:

003002 MOVE.L AOAl
X?

An error was found with the operands. The corrected line can now be
entered.

3-27

3.5.16 Memory Set MS

MS <address> <data...>

The MS command alters memory by setting data into the address specified. The
data can take the form of ASCII string or hexadecimal data. Several strings can
be entered; however, size is limited to eight characters.

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > MS 2000 'ABC' Set memory to ASCII string.
TUTOR 1.X > MS 2003 4445 Set memory to hexadecimal data.
TUTOR 1.X > MS 2

005 12345678 12 Size can be up to 8 characters.
See also: MD, MM

EXAMPLE

TUTOR 1.X.> MD 2000
002000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 secesonaccccccss

TUTOR 1.X > MS 2000 'ABC'

TUTOR 1.X > MS 2006 123 123456

TUTOR 1.X > MD 2000
002000 41 42 4300 00 00 01 23 12 34 56 00 00 00 00 00 ABC....#.4V.....

3-28

3.5.17 Remove Breakpoint

NOBR [<address> <address>....]

NOBR

The NOBR command is used to remove one or more breakpoints from the internal

breakpoint table, and functions as the inverse of the BR command.

COMMAND FORMAT DESCRIPTION
TUTOR 1.X > NOBR Clear all breakpoints.
TUTOR 1.X > NOBR address Clear a specific breakpoint.

See also: BR, GT, TT

EXAMPLE
TUTOR 1.X > .R3 3000

TUTOR 1.X > OF

RO=00000000 R1=00000000 R2=00000000 R3=00003000
R4=00000000 R5=00000000 R6=00000000 R7=00000000

TUTOR 1.X > BR 2000;5 2030 3000;6 3060

BREAKPOINTS

002000 002000;5
002030 002030
000000+R3 003000;6
000060+R3 003060

TUTOR 1.X > NOBR 3000
BREAKPOINTS

002000 002000;5
002030 002030
000060+R3 003060
TUTOR 1.X > NOBR
BREAKPOINTS

TUTOR 1.X >

3-29

3.5.18 Reset Printer Attach NOPA

NOPA

The NOPA command allows the user to detach the line printer from the Port 1
terminal,

See also: PA

3-30

3.5.19 Offset OF
OF

The OF command displays the offsets contained within registers R0O-R7. To help
the user with relocatability and position-independent code, seven general-
purpose offsets (.R0-.R6) are provided. Offset .R7 is always zero, which
provides a convenient way of zeroing other offsets or entering an address
without an offset. If no value is assigned to one of the general-purpose
offsets, it will have the default value of zero.

Unless another offset is entered, each command that expects an address parameter
automatically adds offset RO to the entered address -- that is, if RO = 1000,
the following commands are the same:

BR 10
BR 10+RO

It should also be noted when setting offsets, RO is added to the expression
being entered into the register. To zero a register, use the form:

«RX O+R7 (X = desired register)

The form for setting individual registers is given in the Individual Register
Display/Change (.Rx) command.

See also: .RX

EXAMPLE COMMENT

TUTOR 1.X > .R1 1000 Set offset Rl.
TUTOR 1.X > .R3 3300 Set offset R3.
TUTOR 1.X > .R5 0+R7 Reset offset R5.

TUTOR 1.X > OF
R0=00000000 R1=00001000 R2=00006000 R3=00003300
R4=00000000 R5=00000000 R6=00000000 R7=00000000

TUTOR 1.X > BR D08 1056
BREAKPOINTS

000D08 000D08
000056+R1 001056

TUTOR 1.X > .RO 2000
TUTOR 1.X > BR 10

BREAKPOINTS

000D08 000D08
000056+R1 001056
000010+RO 002010

Set offset RO,

Offset RO is added to the breakpoint
address. Absolute addresses are on
the right. Addresses relative to
the appropriate offset are displayed
on the left. The appropriate offset
is the nearest offset that is less

than or equal to the absolute address.

TUTOR 1.X > MM 1000+R7 To access address $1000 with no offset,

000000+R1 OC ?. offset R7 (always 0) must be added;
otherwise, offset RO will automatically
be added.

TUTOR 1.X >

3-31

3.5.20 Printer Attach PA

PA

The PA command allows the user to attach the line printer so that information
sent to the Port 1 terminal will also be printed. (The printer is physically
attached to parallel Port 3 of the board. See the initial setup instructions.)

The printer can also be called by the Dump (DU3) and Memory Display (MD3)
commands.

If the printer is deselected or not ready, the message PRINTER NOT READY will be
sent to Port 1; TUTOR will wait until the printer is ready or the BREAK key is
pushed.

See also: NOPA, DU, MD

3-32

3.5.21 Port Format PF
PF[<port number>]

The PF command allows the user to display or assign the characteristics of
serial I/0 Port 1 and Port 2. Each of these ports may be individually
programmed for stop bits, character nulls, and carriage return nulls. The baud
rates are selected via jumpers (see Chapter 2).

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > PF Display both Port 1 and Port 2 formats.
TUTOR 1.X > PFl Change Port 1 format,

TUTOR 1.X > P Change Port 2 format,

Parameters include:

a. FORMAT - This two-character (8-bit) parameter determines the number of
stop bits after each byte. Transmission used within TUTOR is 8 bits/byte
and restricted to one or two stop bits/bytes. Therefore, for stop bits
denoted by FORMAT=, entering:

15 causes 1 stop bit (default)
11 causes 2 stop bits

NOTE: This command alters the control register on the MC6850 ACIA. For
more information, see the I/0 Chapter 6 and the MC6850 data sheet.

b. CHAR NULL - This parameter is the number of nulls sent after each
character (default = 00).

c. CR NULL - This parameter is the number of nulls sent after each carriage
return/line feed (line of data). (Default = 00). Hard copy terminals
usually require four nulls.

d. OPTIONS - This is the address in RAM where the 6-byte options variable is
located. The first and second bytes represent the transfer on and
transfer off bytes, respectively, which are used to stop and start the
transfer of S-records. (Refer to paragraph 4.5.2.) The third and fourth
bytes are used with low baud rate or mechanical terminals to control the
display. These bytes are discussed in Appendix B. The last two bytes
contain the trailing and exit characters used in the transparent mode of
operation (paragraph 3.5.23). All bytes are set to their initial (power
up) values when the RESET button is pressed.

EXAMPLES

TUTOR 1.X > PF
FORMAT= 15 15
CHAR NULL=00 00

C/R NULL=00 00
OPTIONS@XXXXXX

3-33

TUTOR 1.X > PFl
FORMAT= 15?11
CHAR NULL=00?
C/R NULL=00?

TUTOR 1.X > PF2
FORMAT= 157
CHAR NULL=00?3
C/R NULL=0078

TUTOR 1.X >

NOTE

TI 700 series terminals should have the
following port characteristics:

BAUD RATE FORMAT CHAR NULL C/R NULL

110 11 0 1
150 15 0 1
300 15 0 4
1200 15 3 17
2400 15 7 2F

See Appendix B.

3-34

3.5.22 Individual Register Display/Change +Rx

.A0, .Al, .A2, .A3, .A4, .A5, .A6, .A7
.no, .ni, .p2, .n3, .n4, .D5, .D6, .D7
.PC’ oSR’ .SS' oUS

The .Rx commands allow the user to display or modify individual registers using
the format: .<register> [<expression>]. Commands with a leading period and the
registers displayed/altered by these commands are:

A0 - A7 address register
.D0 - .D7 data register
RO - .R6 relative offset register (software register)
.PC program counter
SR status register (in the MC68000)
.SS supervisor stack pointer
.Us user stack pointer
EXAMPLE COMMENT
TUTOR 1.X > .PC Display program counter.
.PC=00001010
TUTOR 1.X > .A7 1300 Set address register seven,
TUTOR 1.X > .R5 5500 Set relative offset register five.

TUTOR 1.X > DF
PC=00001010 SR=2704=.S7..Z.. US=FFFFFFFF SS=00001300
D0=0000D0OD0 D1=0000D1D1 D2=0000D2D2 D3=00D3D3D3
=D4D4D4D4 D5=000000D5 D6=00000000 D7=00000000
A0=00000000 A1=00000000 A2=00000000 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=00001300
001010 FFFF DC.W SFFFF

See also: DF, OF

3-35

3.5.23 Transparent Mode ™
T™ [<exit character>] [<trailing character>]

The TM command connects the two serial ports of the board together and ignores
all input/output between them until the exit character is entered from the
terminal attached to serial port 1. The default exit character is CTRL A ($01).

In the transparent mode, the ECB monitors the data transfer only until it sees
the exit character; the exit character, therefore, is also transmitted to the
host. The ECB must send another character, called the trailing character, to
the host to remove or cancel the exit character from the host's buffer.
Otherwise, the exit character will still be in the buffer the next time the
transparent mode is entered. The default trailing character is CTRL X ($18).
Other trailing characters may be selected.

NOTE

In order to enter a trailing character, an exit character
must first be entered. Otherwise, the intended trailing
character will be interpreted as the exit character.

Some possible exit or trailing characters such as NUL ($00), space ($20),
backspace ($08), end of transmission ($04), cancel ($18), line feed ($0A), and
carriage return ($0D) cannot be specified as part of the TM command line. These
characters are used as separators or control characters or are ignored by the
command interpreter. To use these types of characters as exit and trailing
characters, the character must be written to RAM using the MM command. The
trailing and exit characters are the fifth and sixth bytes, respectively, of the
6-byte options variable described in paragraph 3.5.21.

An asterisk (*) as the first character of the command line means to transmit the
rest of the line to the host (port 2).

The modem connected to port 2 should operate at the same baud rate as the
terminal connected to port 1.

See also: LO, PF, VE

EXAMPLE COMMENTS
TUTOR 1.X > Startup or reset condition.
TUTOR 1.X > ™ Command to enter transparent mode.

TRANSPARENT EXIT=$01 = CTL A TUTOR prints this; EXIT=$01=CTL A means that
in order to exit this mode, the operator must
enter CTRL A.

3-36

User talks directly to host, uses editor, assembler, etc.

CTRL A Ends the transparent mode.
TUTOR 1.X > TUTOR prints this and system is ready for new
command.

NOTE: Other exit and trailing characters can be specified. As examples,

TUTOR 1.X > ™ CTRL R

TRANSPARENT EXIT=$12 = CTL R
or

TUTOR 1.X> ™ 7 * Trailing character=$2A=*

i
~J

TRANSPARENT EXIT=$37
TUTOR 1.X > PF

FORMAT= 15 15
CHAR NULL=00 00
C/R NULL=00 00
OPTIONS@0004E6

TUTOR 1.X > MM 4EA Enter NULL ($00) trailing character directly
0004EA 2A 20. into option byte.

TUTOR 1.X >

3-37

3.5.24 Trace TR

TR [<count>]
T [<count>]

The TR command executes instructions, one at a time, beginning at the location
pointed to by the program counter. After execution of each instruction, the
processor registers are displayed, and the instruction pointed to by the program
counter is disassembled.

After the trace mode is entered, the prompt includes a colon (i.e., TUTOR
1.X :>). While in this mode, the single character, carriage return, will cause
one instruction to be traced. To exit, any command may be entered, followed by
a carriage return.

Breakpoints and breakpoint counts are in effect during trace.

Limited tracing can be done within the TUTOR firmware. However, the maximum
count is one. Because the stacks are shared by the trace command and the rest
of TUTOR, they may become jumbled up when tracing is done in the debugger.

COMMAND FORMAT DESCRIPTION

TUTOR 1.X > TR Trace one instruction.

TUTOR 1.X :> T count Trace "count" (hex) instructions.

TUTOR 1.X 2> Carriage return (CR) executes next instruction.

See also: DF, GO, GT, TT
EXAMPLE

TUTOR 1.X > .R6 2000
TUTOR 1l.X > .PC 0+R6

TUTOR 1.X > TR 3

PHYSICAL ADDRESS=00002000

PC=00002002 SR=2700=.S7..... US=FFFFFFFF SS=000007BC

D0=0030FF43 D1=0030FF43 D2=0FFFFFFC D3=00000000

D4=FFFFFFFC D5=FFFFFFFC D6=00000002 D7=00000000

A0=00010040 A1=00002004 A2=000007B6 A3=0000053A

A4=00002004 A5=0000053A A6=000007B6 A7=000007BC

000002+R6 45F82056 LEA.L $00002056 ,A2
PC=00002006 SR=2700=.57..... US=FFFFFFFF 55=000007BC

DO=0030FF43 D1=0030FF43 D2=0FFFFFFC D3=00000000

D4=FFFFFFFC D5=FFFFFFFC D6=00000002 D7=00000000

A0=00010040 A1=00002004 A2=00002056 A3=0000053A

A4=00002004 A5=0000053A A6=000007B6 A7=000007BC

000006+R6 4EF900008152 JMP $00008152

.PC within "DEBUGGER".

PC=00008152 SR=2700=.S7..... US=FFFFFFFF SS=000007BC

D0=0030FF43 D1=0030FF43 D2=0FFFFFFC D3=00000000

D4=FFFFFFFC D5=FFFFFFFC D6=00000002 D7=00000000

A0=00010040 Al1=00002004 A2=00002056 A3=0000053A

A4=00002004 A5=0000053A A6=000007B6 A7=000007BC

006152+R6 48B800010406 MOVEM.W DO,$0406

TUTOR 1.X >
3-38

3.5.25 Trace to Temporary Breakpoint TT
TT <breakpoint address>

The TT command performs the following:
a. Sets a temporary breakpoint at the address specified.

b. Starts program execution in the trace mode at the address specified in
the program counter (PC) (see TR command) .

c. Traces until any breakpoint with a zero count is encountered.

d. Resets the temporary breakpoint.

The temporary breakpoint is not displayed by the BR command.
See also: DF, GO, GT, TR

EXAMPLE COMMENT
TUTOR 1.X > .PC 2000

TUTOR 1.X > TT 2004

PHYSICAL ADDRESS=00002004 Temporary breakpoint address - $2004
PHYSICAL ADDRESS=00002000 Execution address - $2000
PC=00002002 SR=2708=.S7.N... US=FFFFFFFF SS=000007BC

DO=BDBC4144 D1=BDBC4144 D2=FFFFFFFF D3=FFFFFFFF

D4=FFFFFFFF D5=FFFFFFFF D6=FFFFFFFF D7=FFFFFFFF

AQO=FFFFFFFB Al=FFFFFFFF A2=FFFFFFFF A3=FFFFFFFF

A=FFFF7FFF AS=FFFFFFFF A6=FFFFFFFF A7=000007BC

002002 2407 MOVE.L D7,D5

AT BREAKPOINT

PC=00002004 SR=2708=.S7.N... US=FFFFFFFF SS=000007BC

DO=BDBC4144 D1=BDBC4144 D2=FFFFFFFF D3=FFFFFFFF

D4=FFFFFFFF D5=FFFFFFFF D6=FFFFFFFF D7/=FFFFFFFF

AO=FFFFFFFB Al=FFFFFFFF A2=FFFFFFFF A3=FFFFFFFF

A4=FFFF7FFF AS=FFFFFFFF A6=FFFFFFFF A7=000007BC

002004 60FA BRA.S $002000

3-39

3.5.26 Verify (in S-Record Format) VE
VE <port number>[;=text]

The VE command verifies the current contents of memory with the object data in
S-record format from a device external to memory. The device can be attached to
Port 1, Port 2, or Port 4 -- the cassette recorder.

The command has the basic forms:

COMMAND PORT # EXTERNAL DEVICE
VEl Port 1 Terminal (i.e., terminal with tape driver)
VE Port 2 Host (modem) - default port
VE2 Port 2 Host (modem)
VE4 Port 4 Audio cassette

A timeout feature is present for Port 2. If the host connected to Port 2 does
not respond within approximately 10 seconds, the message TIMEOUT will be sent to
Port 1 and the VE command will be aborted.

The optional [;=text] is used only with Port 2. The text following the "=" is
sent to Port 2. 1In this manner, the Port 2 device knows what data to send for
verification (in S-record format). When a mismatch is found between data in
memory and the S-record object data, TUTOR will display the differences. 1If a
display of differences occurs, the record following the record displayed may be
lost. To prevent this, the ECB can send characters to the host to stop and
start the transfer of the S-records. Paragraph 4.5.2 describes this feature.

Any record not containing an S0, Sl, S2, S8, or S9 string is ignored. See
Appendix A for information on S-records.

The offset contained in register RO is added to the addresses of the data
contained in each S-record.

See also: DU, LO, PF

EXAMPLE COMMENT

TUTOR 1.X > VE ;=COPY TEST1.MX,# Verify the file TEST1.MX.

S1131000= 4= 449= t4E= = em === s == ™ e~ " The record is an Sl record with

ERROR $13 byte-count starting at
address $001000, and there are

TUTOR 1.X > differences in the third and

fifth bytes.
TUTOR 1.X > VE4

sl 132000— e T e T e T e T e T e T e T e T T .21— e e T e T eT e T Verify tape fileo
ERROR
TUTOR 1.X >

3-40

3.6 COMMAND SUMMARY AND MESSAGES

TABLE 3-2. TUTOR Commands and Options

COMMAND DESCRIPTION
BF <addressl> <address2> <word> Block of Memory Fill
BM <addressl> <address2> <address3> Block of Memory Move
BR [<address>[;<count>]] Breakpoint Set

BS <addressl> <address2> <data> [<mask>] [;<option>]

Block of Memory Search;
options B, W, L

BT <addressl> <address2> Block of Memory Test
DC <expression> Data Conversion
DF Display Formatted Registers

DU[<port number>] <addressl> <address2> [<text..>]
Dump Memory (S-records)

GD [<address>] Go Direct

GO [<address>] Go

GT <breakpoint address> Go Until Breakpoint
HE Help

LO[<port number>] [;<options>] [=text] Load (S-records); options X, -C

MD[<port number>] <addressl> [<count>] [;<option>]
Memory Display; option DI

MM <address> {;<options>] Memory Modify;
options W, L, O, V, N, DI
MS <address> <data...> ‘ Memory Set
NOBR [<address> <address>....] Breakpoint Remove
NOPA Reset Printer Attach
OF Display Offsets
PA Printer Attach
PF[<port number>] Port Format
+Rx Individual Register Display/Change

3-41

TABLE 3-2. TUTOR Commands and Options (cont'd)

COMMAND

DESCRIPTION

T™ [<exit character>]

TR [<count>]

TT <breakpoint address>
VE[<port number>] [=text]
* text....

A0 - .A7 [<expression>]
D0 - .D7 [<expression>]

.RO - .R6 [<expression>]

Transparent Mode

Trace

Temporary Breakpoint Trace
Verify (S-records)

Send Message to Port 2 (1)
Display/Set Address Register (2)
Display/Set Data Register (2)

Display/Set Relative Offset Register (2)

.PC [<expression>] Display/Set Program Counter (2)
.SR [<expression>] Display/Set Status Register (2)
.SS [<expression>] Display/Set Supervisor Stack Pointer (2)
.Us [<expression>] Display/Set User Stack Pointer (2)
(BREAK) Abort command
(DEL) Delete character
(CTRL D) Redisplay line
(CTRL H) Delete character
(CTRL W) Suspend output (3)
(CTRL X) Cancel command line
(CR) Process command line

NOTES:

(1) See writeup of TM command.
(2) See writeup of .Rx command.

(3) when CTRL W is used, the output display can be continued by

entering any character.,

3-42

TABLE 3-3.

Error Messages and Other Messages

ERROR MESSAGE

MEANING

PRINTER NOT READY

SYNTAX ERROR

ERROR

ILLEGAL INSTRUCTION
ADDR TRAP ERROR
BUS TRAP ERROR

IS NOT A HEX DIGIT

DATA DID NOT STORE

INVALID ADDRESS=

WHAT

NOT HEX=

FAILED AT.. WROTE=.. READ=..
UNDEFINED TRAP 14

CHKSUM=

OTHER MESSAGE

TUTOR 1.X >

TIMEOUT

FORMAT=
CHAR NULL=

C/R NULL=

Printer is not properly connected or cannot
receive output

Error in command line
Error

Instruction used an illegal op-code during
program execution

See Traps in MC68000 User's Manual and
paragraph 4.3.5.1.

Improper character entered in a field that
requires a hexadecimal digit

Data did not go where intended

Too big (1 in bits 24-31) or odd for
MWor .L (1 in bit 0)

Program does not recognize user's entry
Same as IS NOT A HEX DIGIT

Read or write command failure output by BT
Trap function code is not defined

Indicates received checksum is incorrect,
correct checksum is given

MEANING
TUTOR prompt

Displayed if Port 2 does not respond to
LO or VE within 10 seconds

Displayed by PF command
Displayed by PF command

Displayed by PF command

3-43

TABLE 3-3. Error Messages and Other Messages (cont'd)

ERROR MESSAGE

MEANING

OTHER MESSAGE

OPTIONS@XXXXXX

TRANSPARENT EXIT=$01=CTL A
SOFTWARE ABORT

BREAK

AT BREAKPOINT

BREAKPOINTS

PHYSICAL ADDRESS=

PC within "DEBUGGER"

MEANING
Displayed by PF command
Displayed by TM command
Displayed when abort button is pressed
BREAK key has been used
Indicates program has stopped at breakpoint
Displayed by BR command
Actual address by command

Displayed by trace commands

3-44

CHAPTER 4

USING THE ASSEMBLER/DISASSEMBLER

Integrated into the MC68000 Educational Computer firmware is an assembler/
disassembler function. The disassemble function is called as an option to the
Memory Display (MD ;DI) and Memory Modify (MM ;DI) commands, and also is used
during execution of system trace and the display register command. The assemble
function allows code entry and editing and is invoked by the Memory Modify (MM
;DI) command. Chapter 4 is a detailed discussion of the assembler/disassembler.

Pag e

>
!

]
O b Wwwww

INTRODUCTION cocsesocccosocsscsscsocscscsscscesvssosssossscsacsases
1 M68000 Assembly LANGUAGE seeesccvcscosscssccsssccassosssocssce
1.1 Machine-Instruction Operation CodeS seeecesccessccvsccsaces
1.2 DireCtivesS seeveesscescesccaseosasasesessscosscssssssssssses
2 Comparison with MC68000 Resident Structured Assembler
SOURCE PROGRAM CODING eeseeccasscsscscscssscscsscscscscssssssncossss
Source Line FOIMAL ceveeeeescessssccccnsccsessscscossssscnnass
1 Operation Fi€ld seeecseccccosseccsssssvreosscscsssssssnscnce
o2 Operand Field c.eeescececscsccssssscsosssocssasssoocossccaccass
.3 Disassembled SoUrCe LiNE seeescsccessssssssscsssssssccssnse
.4
.5

>
[}

[N
[|

.
N
.

= =

.
3%
.

1

.
N

Mnemonics and DelimitersS ceeeessccccessceoscsccscrsasccnnss
Character Set .seeececesscsecssasessssensscascsssscsscscaces
Instruction SUMMALY cececescecscssecscccesssscsscscssssssesacss
Arithmetic OperationsS ceeescccecescocssssssescssscssssssane
MOVE INStruction .eeeceescesccesscvescsssocssccsscccscssscs
Compare INStrucCtionS .eeeeeecccececsscccccccsosvscosssassanae
Logical OperationS eseeecsescesccsesscsssscsssssscsssccscnacse
Shift OperationS ceeeeseccescecssceccssesssccscesscascnsess 4-10
Bit OperationsS ceseeecesscccossscccsscccescssccssssccanccaaes 4-11
Conditional OperationsS seecessscccescccessssacecsscscsesess 4-11
Branch OperationS eeeececscescsccnscsesoccssssscossssssescsas 4-11
JUmMp OPErationS eseecescecececocscocecscsoscssnsscssssscssess 4-12
DBCC INSErUCtion c.eseecseccsccescescsosssessscescccsssoscses 4-12
Load/Store Multiple .eceececcssesccsosscccossosssssccscscss 4-13
Load Effective AQAreSS seseescsccscssscessescscsssossssessss 4-14
Variants on Instruction TYPES ceececesscosccssccscsccsscesss 4-14
Addressing MOdES ceesceesscccscssossscessoscsscssccsscsssssss 4-15
Register Direct MOdES sceececesscscsccsscccnsscsosscsccscss 4-18
Memory AdAresSs MOdeS eeececcscccscosscoscsossccccsscscscses 4-18
Special AJAress MOdES seeeessccnsoscsccscssccscasscscscscsee 4—20
Notes on Addressing OptionsS eceeeececceccccccccccssccassses 4-23
DC.W Define Constant DireCtive ceeeesscescesscsccssccccsees 4-24
ENTERING AND MODIFYING SOURCE PROGRAMS .eeocscssocsosscscssssss 4-24
Invoking the Assembler/DisassSembler sececececsscccsscsccesess 4-26
Entering a Source Line ..ceeeecscccecsscccessscnosssssccascss 4-26
Program Entry/Branch and Jump AJAreSSeS sceeessccccessscscses 4-27

1 Entering Absolute AGAreSSeS seccecesscoccsscsccesssssscossss 4=27
2 Desired Instruction FOIM .eeceecsccsscssccosscssscnscossses 4-28
3 Current Location ..cseecesesscccsssceresssonosssssccnsasses 4-28
Assembler Output/Program LiStingS seeeecesccesceccccsccccsses 4-29

[]
[\

[t ST T S Y S I N S S SO
L
N
[] * e

.
NN
.

BWWWWWRRNDNNNDN NN DN NN RN
L]
O 00~ Y

L]
U W N

L 2
S\O\DG)@@O\O\O\

L] L] *
wWN O

CERER Y

Rl ol ol I~ R~ S S - N S N SN S N - S O SO O O - - U O
L]

Error Conditions and MeSSAgeS secececcecescccoscsssccossscscccocs
Trap ELYOILS ceceescccccsccsescscsscrsscssosscsscsscoscnscsccse
Improper Character ..ecseececcscsscsscsccsscssscsscscnacccce
Number TOO LArJEe seseccecssscscccscscccccscscccscccccscsccccce
ASSEMDlY EXFOrS .cccecccooscscsasascesssscccccscsccccsassace

TESTII\K;/EXECUTING PRmRAMS 0606000000 00006806060000000000000ss0ss0sss0

b W N -

System Initialization ..eececcecscsccscscsnscccecccccsscccsnss
Setting BreakpointS .eececesecescccscsccccccccescsccacscsane
Program EXeCUtion ..ceceseccccscscevsscccsesccacccccsssccsncs
Trace MOe seeecssssccrsasccccoscscsssssesassssccccssscssosns

Inserting and Deleting Source LinNeS secececccsescccoscccccnces

SAVING PRmRAMS €0 0000000008 0060600600000000008000000000000000s0ts000

L]
BB W W WN

. o
.
N =

[S N T T T - S St gt S S
VOO RWWWWW

N =

Saving Programs ON TaPE eeecsccccsvacsesssssscccscssssssescse
Loading and Verifying Programs from Tape seececccceccceccccccss
Upload tO @ HOSt ecececcceccacescoceasssscscccscccescsccnscane
EXORCisSer as HOSL ceeecccecccccossccsccscsscsssoscsceccsnsosne
EXORMACS aS HOSL eeecveccccoccsccoccesscccscosccoscsscccsscccne
Download from @ HOSt eeeceveccccecscccssoscsscscccssccccscccsccs
EXORCiser asS HOSE ceccecccsccososnscssccsccsscsscsscscscscacns
EXORMACS QS HOSt ceeececrcevcocossscssccceccsscscocsscscsons

CHAPTER 4

USING THE ASSEMBLER/DISASSEMBLER

4.1 INTRODUCTION

Included as part of the MC68000 Educational Computer firmware is an assembler/
disassembler function. The assembler/disassembler is an interactive assembler/
editor in which the source program is not saved. Each source line is translated
into the proper MC68000 machine language code and is stored in memory on a
line-by-line basis at the time of entry. In order to display an instruction,
the machine code is disassembled and the instruction mnemonic and operands are
displayed. aAll wvalid MC68000 instructions are translated. The mnemonic
ILLEGAL, described in Appendix B of the MC68000 User's Manual, is not recognized
by the educational computer assembler. Also, refer to paragraph 4.2.2.4 for
restrictions on the use of the mnemonic CCR.

The educational board assembler is effectively a subset of the MC68000 Resident
Structured Assembler. It has more limitations than the resident assembler, such
as not allowing line numbers and labels; however, it is a powerful tool for
creating, modifying, and debugging MC68000 code.

4.1.1 M68000 Assembly Language

The symbolic language used to code source programs for processing by the
assembler is called M68000 assembly language. This language is a collection of
mnemonics representing:

. Operations
- MC68000 machine-instruction operation codes
- Directive (pseudo-op)

. Operators

. Special symbols

4,1,1.1 Machine-Instruction Operation Codes. That part of the assembly
language that provides mnemonic machine-instruction operation codes for the
MC68000 machine instructions is described in the MC68000 16-Bit Microprocessor
User's Manual, MC68000UM. The user should reference this manual.

4.1.1.2 Directives. The assembly language can contain mnemonic directives
which specify auxiliary actions to be performed by the assembler. Directives
are not always translated to machine language.

Assembler directives assist the programmer:
. In controlling the assembler output
. In defining data and symbols
. In allocating storage
The educational board assembler recognizes only one directive called define

constant (DC.W). This directive is used to define data within the program.
Refer to paragraph 4.2.4 for a description of this directive.

4-3

4.1.2 Comparison with MC68000 Resident Structured Assembler

There are several major differences between the MEX68KECB assembler and the
MC68000 Resident Structured Assembler. The resident assembler is a two-pass
assembler that processes an entire program as a unit, while the educational
board assembler processes each line of a program as an individual unit. Due
mainly to this basic functional difference, the capabilities of the TUTOR
assembler are more restricted:

a. Label and line numbers are not used. — Labels are used to reference other
lines and 1locations in a program. The one-line assembler has no
knowledge of other program lines and, therefore, cannot make the required
association between a label and the label definition located on a
separate line,

b. Source lines are not saved. - In order to read back a program after it
has been entered, the machine code is disassembled and then displayed as
mnemonic and operands.

c. Limited error indication. - The one-line assembler will show a question
mark (?) under the portion of the source statement where an error
probably occurred, or will display the word "ERROR" or other short
message. In contrast, the resident assembler generates specific error
messages for over 60 different types of errors.

d. Only one directive (DC.W) is accepted.
e. No macro operation capability is included.
f. No conditional assembly is used,

g. Several symbols recognized by the resident assembler are not included in
the MEX68KECB assembler character set. These symbols include !, >, and
<. Two other symbols, * and /, each have multiple meanings to the
resident assembler, depending on the context, but only one meaning to the
MEX68KECB assembler. Finally, the ampersand character (&) specifies a
decimal number when used with the ECB assembler (although numbers with no
prefix are assumed to be decimal) while this symbol represents a logical
AND function to the resident assembler. Paragraph 4.2.1.5 describes the
MEX68KECB assembler character set.

Although functional differences exist between the two assemblers, the one-line
assembler is a true subset of the resident assembler. The format and syntax
used with the TUTOR assembler are acceptable to the resident assembler except as
described in g. above.

4,2 SOURCE PROGRAM CODING

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line and must be
either an executable instruction or a DC.W assembler directive. Each source
statement follows a consistent source line format.

4.2,1 Source Line Format

Each source statement is a combination of operation and, as required, operand
fields; line numbers, labels, and comments are not used. The general format is:

sp <operation field> sp [<operand field>]

The space (sp) must be the first character of each line. This is to be
consistent with the resident assembler, which expects the first field of each
line to be either a space or a label, Because the TUTOR assembler never allows
a label, the first character must always be a space.

4,2.1.1 Operation Field. The operation field must follow at least one space
(more can be used) and entries can consist of one of two categories:

a. Operation codes - which correspond to the MC68000 instruction set, or

b. Define constant directive - the DC.W is recognized to define a constant
in a word 1location. This is the only directive recognized by the
assembler.

The size of the data field affected by an instruction is determined by the data
size code. Some instructions and directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size applicable to that instruction will be assumed. The size code need not be
specified if only one data size is permitted by the operation. The data size
code is specified by a period (.), appended to the operation field, and followed
by B, W, or L, where:

Byte (8-bit data)
Word (the usual default size; 16-bit data).
Long word (32-bit data)

L I 1}

B
W
L

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(A0) ,Al Long word size is assumed (.B,.W not allowed); this
instruction loads effective address of first operand
into Al.

ADD.B (a0) ,DO This instruction adds the byte whose address is (A0) to

lowest order byte in DO.

ADD Dl,D2 This instruction adds low order word of D1 to low order
word of D2. (W is the default size code.)

ADD,L A3,D3 This instruction adds entire 32-bit (long word)
contents of A3 to D3.

Example (illegal):
SUBA.B #5,Al Illegal size specification (.B not allowed on SUBA).
This instruction would have subtracted the value 5 from

the low order byte of Al; byte operations on address
registers are not allowed.

4-5

4.2.1.2 oOperand Field. If present, the operand field follows the operation
field and 1s separated from the operation field by at least one space. When two
or more operand subfields appear within a statement, they must be separated by a
comma. In an instruction like ' ADD D1,D2' the first subfield (D1) is generally
applied to the second subfield (D2) and the results placed in the second
subfield. Thus, the contents of Dl are added to the contents of D2 and the
result is saved in register D2. In the instruction ' MOVE D1,D2' the first
subfield (D1l) is the sending field and the second subfield (D2) is the receiving
field. In other words, for most two-operand instructions, the general
format ' opcode source,destination’ applies.

4.2.1.3 Disassembled Source Line. The disassembled source line may not look
identical to the source line entered. The disassembler makes a decision on how
to represent a numerical value based on how it interprets the number's use. If
the number is determined to be an address or a "would-be" address, it is
displayed in hexadecimal; everything else is decimal. For example,

MOVE.L #$1234, $5678
disassembles to
005000 21FC000012345678 MOVE.L #4660,$00005678

Also, for some instructions, there are two valid mnemonics for the same op code,
or there is more than one assembly language equivalent. The disassembler may
choose a form different from the one originally entered. As examples:

a. BRA is returned for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two
branch instructions. The BT form (branch conditionally
true) has the same op code as the BRA instruction. Also,
DBRA (decrement and branch always) and DBF (never true,
decrement, and branch) mnemonics are different forms for
the same instruction. 1In each case, the assembler will
accept both forms.

4,2.1.4 Mnemonics and Delimiters. The assembler recognizes all MC68000
instruction mnemonics except ILLBEGAL. Numbers are recognized as both decimal
and hexadecimal, with decimal the default case (note that this is reverse to the
TUTOR commands) :

a. Decimal - is a string of decimal digits (0-9) without a prefix (default)
or preceded by an optional ampersand (&). Examples are:

1234
&1234

b. Hexadecimal - is a string of hexadecimal digits (0-9, A-F) preceded by a
dollar sign ($). An example is:

SAFES

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a long word
boundary if the string contains more than two characters.

005000 5300 DC.W 's!
005002 223C41424344 MOVE.L #'ABCD',Dl
005008 3536 DC.W '56"

NOTE

The MC68000 has seventeen 32-bit registers (D0-D7, A0-A6, SSP, USP)
in addition to a 32-bit program counter (24 bits available) and a 16—
bit status register. Registers DO-D7 are used as data registers for
byte, word, and long word operations. Registers A0-A6 and SSP and USP
are used as software stack pointers and base address registers; they
may also be used for word and long word data operations. All 17
registers may be used as index registers. Register A7 is a pseudo
register, used as the system stack pointer corresponding to either
SSP or USP, depending on the operating state.

The following register mnemonics are recognized by the assembler:
DO-D7 Data Registers

AQ-A7 Address Registers

Address register seven represents the system stack pointer of the
active system state.

usp User stack pointer. Used only in privileged instructions which
are restricted to supervisory state,

CCR Condition code register (low 8 bits of SR)

SR Status register. All 16 bits may be modified in the supervisor
state., Only low 8 bits (CCR) may be modified in user state.

PC Program Counter. Used only in forcing program counter-relative
addressing

4-7

4.2.1.5 Character Set. The character set recognized by the MEX68KECB assembler
is a subset of ASCII, and these are listed below:

a. The uppercase letters A through Z

b. The integers 0 through 9

Cc., Arithmetic operators: + -

d. Parentheses ()

e. Characters used as special prefixes:

(pound sign) specifies the immediate form of addressing
(dollar sign) specifies a hexadecimal number
(ampersand) specifies a decimal number

(commercial at sign) specifies an octal number

(percent sign) specifies a binary number

(apostrophe) specifies an ASCII literal character

- o D K N =k

f. Five separating characters:

Space

, (comma)
. (period)
/ (slash)
- (dash)

g. The character * (asterisk) indicates current location.

4.2.2 Instruction Summary

The following paragraphs summarize the types of MC68000 instructions, their
variations, and addressing modes. The MC68000 User's Manual describes the
MC68000 instructions and addressing modes in greater detail.

4.2.2.1 Arithmetic Operations. The MC68000 instruction set includes the
operations of add, subtract, multiply, and divide. Add and subtract are
available for all data operand sizes, including extended, and also for address
operands.

Multiply and divide may be signed or unsigned. Operations on decimal data (BCD)
include add, subtract, and negate. The general form is:

OPERATION.SIZE SOURCE ,DESTINATION
Example:
ADD.W D1,D2 Adds low order word of D1 to low order word of D2.

SUB.B #5,(Al) Subtracts 5 from the byte whose address is contained in Al.

4-8

4.2.2.2 MOVE Instruction. The MOVE instruction is used to move data between
registers and/or memory. These moves include register-to-register, memory-to-
memory, memory-to-register, and register—to-memory transfers. The general form
is:

MOVE.SIZE SOURCE ,DESTINATION
Examples:
MOVE D1,D2 Moves low order word of D1 into low order word of
D2.

MOVE.L $02000,$03000 Moves long word addressed by $02000 into long word
addressed by $03000.

MOVE.W #'A',1000 Moves word with value of 'A'00 into byte addressed
by &1000.

MOVE $2000,A3 Moves word addressed by $2000 into low order word
of A3,

The MOVEQ mode always specifies a 32-bit destination operand and is, therefore,
used only for a MOVE.L operation. The source data is eight bits and is sign-
extended to a 32-bit value.

4,2.2.3 Compare Instructions. The general formats of the compare and check
instructions are:

CMP.SIZE OPERAND; ,OPERAND,
CHK BOUNDS ,REGISTER

where operand; is compared to operandy by the non-destructive subtraction of
operand; from operand, without altering operand; or operand;.

Condition codes resulting from the subtraction include: N set for negative
result, Z set for zero result, V set for overflow, and C set for a generated

borrow.

The CHK instruction will cause a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:
CMP.L $2000,D1 Compares long word at location $2000 with contents of
D1, setting condition codes accordingly.
CHK (aA0) ,D3 Compares word whose address is in A0 with lower order

word of D3; if check fails (see the MC68000 User's
Manual) , a system trap is initiated.

4.2.2.4 Logical Operations. Logical operations include AND, OR, EXCLUSIVE OR,
NOT, and two logical test operations. These functions may be done between
registers, between registers and memory, or with immediate source operands. The
general form is:

OPERATION.SIZE SOURCE ,DESTINATION
Example:
AND D1,D2 Low order word of D2 receives logical 'and' of low

order words in D1 and D2.

The destination may also be the status register (SR). When in the user state,
only the lower eight bits of the status register may be modified. The byte size
extension must be used. Note, however, that the mnemonic CCR is not accepted by
the assembler for logical operations. Instead, the mnemonic SR must be used
with a size extension of .B. CCR is used only with the MOVE instruction.

EXAMPLE: ANDI.B #5,SR instead of ANDI.B #5,CCR

4,2.2.5 shift Operations. Shift operations include arithmetic and logical
shifts, as well as rotate and rotate with extend. All shift operations may be
either fixed with the shift count in an immediate field or variable with the
count in a register. Shifts in memory of a single bit position left or right
may also be done. The general form is:

OPERATION,SIZE COUNT ,OPERAND
Example:
LSL.W #5,D3 Performs a left, logical shift of low order word of D3

by 5 bits; .W is optional (default).

ASR #1,(A2) Performs a right, arithmetic shift of the word whose
address is contained in A2; since this is a memory
operand, the shift is only 1 bit.

ROXL.B D3,D2 Performs a right rotation with extend bit of low order
byte of D2; shift count is contained in D3.

4.2.2.6 Bit Operations. Bit operations allow test and modify combinations for
single bits in either an 8-bit operand for memory destinations or a 32-bit
operand for data register destinations. The bit number may be fixed or
variable. The general form is:

OPERATION BITNO,OPERAND
Example:

BCLR #3,544(A3) Tests bit number 3 in byte whose address is given by
address in A3 plus displacement of $44, sets or clears
the Z condition code, and clears the specified bit in
the destination.

BCHG D1,D2 Tests a bit in D2, reflects its value in condition code
Z, and then changes value of that bit; bit number is
specified in D1.

4-10

4.2.2.7 Conditional Operations. Condition codes can be used to set and clear
data bytes. The general form is:

OPERATION LOCATION
Example:
SNE (A5)+ If condition code 'NE' (not equal) is true, then set

byte whose address is in AS to 1's; otherwise, set that
byte to @'s; increment A5 by 1.

4.2.2.8 Branch Operations. Branch operations include a branch to subroutine,
an unconditional branch, and 14 conditional branch instructions. The general
form is:

OPERATION,EXTENT LOCATION
Examples:
003058 6176 BSR $3000 Branch to subroutine at location $3000.
003FF0 670E BEQ.S $4000 Short branch to $4000, on condition "EQ".

003FF0 6600000E BNE.L $4000 Long branch to $4000, on condition "NE".

003FFO0 BPL.S $3000 Short branch not allowed; displacement >
8 bits.

All conditional branch instructions are PC-relative addressing only, and may be
either one- or two-word instructions. The corresponding displacement ranges
are:

one-word -128...+127 bytes (8-bit displacement)

two—-word -32768...+32767 bytes (16-bit displacement)
By default, the assembler will resolve all references, both relative and
absolute, by using the shorter form of the effective address in the operand
reference, if possible; otherwise, the longer form will be chosen. The user can
force the long form of the instruction by using the .L suffix.
In a short branch instruction, the operand must not reference the statement

which immediately follows it. This would result in a displacement value of 0,
which is recognized by the assembler as an error condition.

4-11

4.2.2.9 Jump Operations. Jump operations include a jump to subroutine and an
unconditional jump. The general form is:

OPERATION.EXTENT LOCATION
Example:
JMP 4 (A7) Unconditional jump to the location 4 bytes beyond
the address in A7.
JMP.L $2000 Long (absolute) jump to the address $2000.
JSR $3000 Jump to subroutine at address $3000.

Jumps may specify any control addressing mode as the destination location. All
references will use the shorter absolute address format, if possible; otherwise,
the longer format will be used. The default extent may be overridden on a
single jump operation to a label by appending "S" or "L" as an extent code for
the instruction,

4,2.2.10 DBcc Instruction. This instruction is a looping primitive of three
parameters: condition, data register, and address. The instruction first tests
the condition to determine if the termination condition for the loop has been
met and, if so, no operation is performed. If the termination condition is not
true, the data register is decremented by one. If the result is -1, execution
continues with the next instruction. If the result is not equal to -1,
execution continues at the indicated location. The address must be within
16-bit displacement. The general format of the instruction is:

DBcc DATA REGISTER,ADDRESS

4-12

4,2.2.11 Load/Store Multiple.

This instruction allows the loading and storing

of multiple registers. Its general format is:

MOVEM.SIZE REGISTERS,LOCATION (register to memory)
MOVEM.SIZE LOCATION,REGISTERS (memory to register)

where size may be either W (default) or L.

The "registers" operand may assume any combination of the following:

R1/R3/R6, etc., means Rl and R3 and R6
R1-R3, etc., means Rl through R3

The order in which the registers are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. See MOVEM instruction in
Appendix B of the MC68000 User's Manual for further details.

NOTE

Registers discussed here include data registers zero through seven
and address registers 2zero through seven but not the software
offset registers (RO through R7) used by TUTOR.

Examples:

MOVEM (A6)+,D1/D5/D7

MOVEM.L A2-A6,- (A7)

MOVEM (A7)+,Al1-A3/D1-D3

MOVEM.L Al/A2/A3,$2000

Load registers Dl, D5, and D7 from three
consecutive (sign-extended) words in memory,
the first of which is given by the address in
A6; A6 1is incremented by 2 after each
transfer.

Store registers A2 through A6 in 5 consecu-
tive long words in memory; A7 is decremented
by 4 (because of .L); A6 is stored at A7;
A7 is decremented by 4; A5 is stored at A7,
etc,

Loads registers D1, D2, D3, Al, A2, A3 in
order from the six consecutive (sign-
extended) words in memory, starting with
address in A7 and incrementing A7 by 2 at
each step.

Store registers Al, A2, A3 in three consecu-
tive long words starting with location $2000.

4-13

4.2.2.12 Load Effective Address. This instruction allows computation and
loading of an effective address into an address register. The general format
is:

LEA OPERAND,REGISTER
Example:

LEA (a2,D5) ,Al Load Al with effective address specified by
first operand; see later explanation of
addressing mode "address register indirect
with index" (paragraph 4.2.3.2).

4,2.2.13 Vvariants on Instruction Types

Certain instructions allow a "quick" form when immediate data within a
restricted size range appears as an operand. It is necessary for the programmer
to "force" such a form by appending a "Q" to the mnemonic op code (to indicate
"quick") on instructions for which such a form exists, If the specified quick
form does not exist, or if the immediate data does not conform to the size
requirements of the abbreviated form, an error will be generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations); these variants append an "A" to the instruction
mnemonic (e.g., ADDA, CMPA). This variant will be chosen by the assembler
without programmer specification, when appropriate to do so; the programmer need
specify only the general instruction mnemonic. However, the programmer may
"force" or specify such a variant form by appending the "A". If the specified
variant does not exist or is not appropriate with the given operands, an error
will be generated.

The CMP instruction also has a memory variant form (CMPM) in which both operands
are a special class of memory references. The CMPM instruction requires
postincrement addressing of both operands. The CMPM instruction will be
selected by the assembler, or it may be specified by the programmer.

The variations —— A, Q, and M — must conform to the following restrictions:

A Must specify an address register as a destination, and cannot specify
a byte size code (.B).

Q Requires immediate operand be in a certain size range. MOVEQ also
requires longword data size.

M Both operands must be postincrement addresses.

For example, the instruction
ADDQ #9,DO Attempts to add value 9 to DO

will cause an assembly error, because the immediate operand is not in the valid
size range (1 through 8).

4-14

4.2,3 Addressing Modes

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addressing and data
organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the MC68000 User's Manual.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or long words must be even. Likewise, instructions
must begin on an even word boundary.

Individual bits within a byte (operand for memory destinations) or long word
(operand for data register destinations) may be addressed with the bit
manipulation instructions (paragraph 4.2.2.6). Bits for a byte are numbered 7
to 0, with 7 being the most significant bit position and 0 the least
significant. Bits for a long word are numbered from 31 to 0, with 31 being the
most significant bit position and 0 the least significant bit position.

31 7 0

MSB LSB

Table 4-1 summarizes the addressing modes defined for the MC68000, their syntax,
and significant constraints.

4-15

s11q g€ :1931s1bo1 ssaippe

!(posn I* SS9TUN pPOPUIIXD

-ubts ‘s3iq 91) 193s1ba1 Xopul se
pesn aq Aew 183s1H91 O 10 ¥ 3ey3 830U
!pepusixe-ubis ‘s311q g :jusuweoeTdsIp
!aantosqe aq 3Isnu <i1dxad>

(suotado ou) s31q ZE ST 9Z1S 193s1HO1
!popuaixs-ubts ‘s3tq 91 :ajuswedeTdsIp
!santosqe aq 3snu <1dxa>

(wa’uv) <adxa>
(u‘uy) <adxe>

(uy) <adxa>

+(uv)

(uv) -

(uv)

ua

X9puT yITM
30911puUl 193s1bO1 Ssaippy (o

JUawRORTdSIP YITM
1091IpUl 193S1ba1 ssaippy (P

Juaue1dutalsed YaIm
30911put 193s1b91 SS91ppY (O

Jusuweioopaid ym
1081Tput 193s1Hb91 ssaippy (g

30911putr 1931s1H01 SS91IppY (e
SS21ppY A10uBW (Z
30911p 193S1H91 SS81ppV (g
30911p 1931691 eaed (e

30911Q 193s1b3y (T

SILNSWIWOO

XVINAS

Jaow

SOpPOW SS9Ippv *T1-§ d79VL

4-16

* (MS) 19asibo1 sniels

3yl 10 ‘(dgsn) 1e3uiod 3oels iasn Iyl

‘ (ass) 1s3utod yoeas 1osiazadns oy

‘ (as) 19autod jyoras uelsAs ay3 03 soud
—19391 31O0TTdwl a¥ew SUOTIONIFSUT SWOS

*SUOTIONIISUT JUSIIND 3Y] UO USPPTI
—19A0 ST 9ZTS 3[NPJOP 9Y3 1aylaym pue
SSaippe uorleurlssp syj uo burpuadep
‘s31q 9T 10 g 19yar® ST Juswede1dsIip
ay3l {Dd ay3 woiJ jusweoeTdsIp e ST
Ssaippe 8AT109]J9 9ya {uoTldNIISUT Ho8d
10 (dog) youeiq teuoraipuocd Aq pesoaul

-HO 53. hmt ﬁ‘-ﬁz 8% wn >g~

saduai1azal 31or1Tdur 19y30 (S

@ousi193Ia1 Od 3torTdul (¥

!oantosqe aq 3snu i1dxed> <adxa># eaep a3erpouml (O
pspusixs-ubrs ‘s31q g :juswsoeTdsIp
foantosqe aq asnu <idxa> (uag’od) <adxa>
{3usueoeTdSTP pue XOpul YITM Od podi103 (uv’Dd) <adxo>
papuaixs-ubrs ‘sa1q 91 :3juswedeTdsip
faanTosqe aq 3Isnu <idxa>
‘3usuPdeTdSTP U3TM Dd pediod (0d) <adxa> JusueoeTdsIp Uitk 2d (9
S31q Z€ ST buoy ajantosqe
!pepusixa-ub1s ‘s31q 91 ST II0US a3nyosqe
!s3ewi0y omy ale a9yl
!sseappe aantosqe ue AJj1oads 3snu <idxe> <adxa> aanTosqy (e
Ssa1ppV Teroads (¢
SILNAIWWOD XVINAS e (€0))

(p,3U0D) SOpPOW SSoIppY °T-% TTGVL

4-17

4.2.3.1 Register Direct Modes. These effective addressing modes specify that
the operand is in one of the 17 multifunction registers (eight data and nine
address registers). The operation is performed directly on the actual contents
of the register. When an instruction is executed, references to A7 specify the
supervisor stack pointer if the supervisor state status bit is set in the status
register and the user stack pointer otherwise.

Notations: An Address register direct

where n is between 0 and 7

Dn Data register direct
Examples: CLR.L Dl Clear all 32 bits of D1
ADD Al A2 Add low order word of Al to low order
word of A2

4.2.3.2 Memory Address Modes. The following effective addressing modes specify
that the operand is in memory and provide the specific address of the operand.

Address Register Indirect

The address of the operand is in the address register specified by the register
field.

Notation: (An)

Examples: MOVE #5, (AS) Move the value 5 to word whose address is
contained in A5,

SUB.L (al) ,DO Subtract the value in the long word whose
address is contained in Al from DO.

Address Register Indirect with Predecrement

The address of the operand is in the address register specified by the register
field. Before the operand address is used, it is decremented by one, two, or
four, depending upon whether the operand size is byte (.B), word (.W), or long
(.L) .

Notation: —=(An)

Examples: CLR -(A2) Subtract 2 from A2; clear word whose
address is now in A2.
cMP.L -(a0) ,DO Subtract 4 from A0; compare long word
whose address is now in A0 with contents
of DO.

4-18

Address Register Indirect with Postincrement

The address of the operand is in the address register specified by the register
field. After the operand address is used, it is incremented by one, two, or
four, depending upon whether the size of the operand is byte (.B), word (.W), or

long (.L).
Notation: (An)+

Examples: MOVE.B (A2)+,D2 Move byte whose address is in A2 to D2;
increment A2 by 1.

MOVE.L (A4)+,D3 Move long word whose address is in A4 to
D3; increment A4 by 4.

Address Register Indirect with Displacement

The address of the operand is the sum of the address in the address register and
the 16-bit sign-extended displacement.

Notation: <expression> (An)

Examples: CLR.B 5(A0) Clear byte whose address is given by
adding 5 to contents of A0.

MOVE #2,10(A2) Move 2 to word whose address is given by
adding 10 to contents of A2,

Address Register Indirect with Index

The address of the operand is the sum of the address in the address register,
the 8-bit sign-extended displacement, and the contents of the index (A or D)
register.

Notations: <expression>(An,Rn.W) Specifies sign-extended low order word of
index register.

<expression>(An,Rn.L) Specifies entire contents of index register.

Examples: ADD 5(al,D2) ,D5 Add to low order word of D5 the word
whose address is given by addition of
contents of Al, the sign-extended low
order word of index register D2, and the
displacement 5.

MOVE.L D5,$20(A2,A3.L) Move entire contents of D5 to long word
whose address is given by addition of
contents of A2, contents of entire index
register A3, and the displacement $20.

4-19

4.2.3.3 Special Address Modes. Special address modes use the effective
address register field to specify the special addressing mode instead of a
register number. The following table provides the ranges for absolute short and
long addresses.

32-bit address 16-bit representation of 32-bit address
00000000 0000

. . Absolute Short
00007FFF 7FFF
00008000

. No representation in 16 bits

. Absolute Long
FFFF7FFF
FFFF8000 8000

. . Absolute Short
FFFFFFFF FFFF

Absolute Short Address

The 16-bit address of the operand is sign extended before it 1is used.
Therefore, the useful address range is 0 through $7FFF and S$FFFF8000 through
SFFFFFFFF.

Notation: XXX
Example:

002500 4EF80400 JMP $400 Jump to hex address 400 specified
as a 16-bit sign-extended address.

Absolute Long Address

The address of the operand is the 32-bit value specified.

Notation: XXX

Examples:

007800 4EF900012000 JMP $12000 Jump to hex address 12000 specified
as a 32-bit address.

002500 4EF900000400 JMP.L $400 Jump to hex address 400 specified

as a 32-bit address. The long
address is forced by the .L option.

4-20

Program Counter with Displacement

The address of the operand is the sum of the address in the program counter
(current instruction location plus two) and the sign-extended 16-bit
displacement integer. The assembler calculates this sign-extended displacement
by subtracting the address of the displacement word (i.e., current instruction
address plus two) from the value in the operand field.

Notation: <expression> (PC) Forced program counter-relative; cannot
be used for branch instructions

The branch instructions (BRA, BSR, Bcc, DBcc) are a special case of the program
counter with displacement address mode. These instructions always use program
counter relative addressing; the displacement integer, however, can be either 16
or 8 bits long for the BRA, BSR, and Bcc instructions. An 8- or 1l6-bit
displacement 1is specified by an .S or .L, respectively, following the
instruction mnemonic. However, since these instructions allow only one address
mode, the program counter with displacement mode is not explicitly selected in
the source line. Instead, only the destination address of the branch is
specified as shown in the following examples. For all other instructions, the
program counter with displacement mode must be explicitly selected.

Examples:

001050 6700FFAE BEQ.L $1000 Branch if EQ condition code to $1000.
Displacement integer is 16 bits.

001050 6EOE BGT *+$10 Branch if GT condition code to 16
bytes past this instruction.

001050 4EFAFSAE JMP $900(PC) Force the evaluation of $900 to be

program counter-relative. Displace-
ment = $0900-$(1050+2) =$F8AE.

4-21

Program Counter with Index

The address is the sum of the address in the program counter, the sign-extended
8-bit displacement value, and the contents of the index (A or D) register. The
displacement is calculated in the same manner as above.

Notations: <expression>(PC,Rn.W) Forced program counter-relative

<expression>(PC,Rn,L) with index using word (default) or
long word index.

Examples:

005000

005000

001150

002030

NOTE:

4EFACOFE JMP $1100(PC) Force evaluation of $1100 to be
program counter-relative. Dis-

placement value is 16 bits.

JMP $1100(PC,A2) Destination address 1is out of
range; displacement value is only
8 bits for program counter with
index address mode.

AEFBAOAE JMP $1100(PC,A2) Force evaluation of $1100 to be
program counter-relative with
index. Lower 16 bits of A2 are
used as the index.

323B58CE MOVE $2000(PC,D5.L),D1 Force evaluation of $2000 to be
program counter-relative with
index. All 32 bits of D5 are used
as the index.

In the program counter with displacement and program counter with index
address modes, the expression represents the actual memory address. For
example, to jump to address $1050, the instruction JMP $1050(PC) might be
used. The assembler calculates the required displacement to reach
address $1050 from the current location. In the address register
indirect with displacement and the address register indirect with index
address modes, however, the expression represents the displacement rather
than the memory address —— hence, the instruction JMP $1050(A0) will jump
to the memory address given by the contents of register A0 plus $1050.

Immediate Data

An absolute number may be specified as an operand by immediately preceding a
number or expression with a '#' character. The immediate character (#) is used
to designate an absolute number other than a displacement or an absolute
address.

Notation: #XXX

Examples: MWE #1,D0 Move value 1 to low order word of DO.

SUB.L #1,D0 Subtract wvalue 1 from the entire
contents of DO.

4-22

4.2.3.4 Notes on Addressing Options. By default, the assembler will resolve
all references, both PC relative and absolute, by using the shorter form of the
effective address in the operand reference, if possible; otherwise, the longer
form will be chosen.

On an instruction which does not allow a size code, the reference default format
may be overridden (for that instruction only) by appending .S (short) or .L
(long) to the instruction mnemonic.

The shorter form of the effective address for relative branch instructions is an
8-bit displacement; the longer format is a 16-bit displacement. For absolute
jumps, the shorter effective address is the 16-bit absolute short; the longer
format is the 32-bit absolute long mode. In either relative branches or
absolute jumps, if the shorter format is directed and the longer format is found
necessary, an error will occur.

A long form may be forced by following the instruction mnemonic with .L
Example:

BEQ.L $3050 If condition code 'EQ' (equal) is true, then branch to
$3050 (using the long form of the instruction).

In this case, the instruction size is forced to two words. An error will be
printed if the operand field is not in the range of an 16-bit displacement.

Default actions of the assembler have been chosen to minimize two common address
mode errors:

a. Displacement range violations

Relative branch instructions (Bcc, BRA, BSR) allow either 8-bit or 16-bit
displacements from the PC, on references in such instructions, the
default action is to use the 8-bit displacement if the destination
address is within that range; otherwise, the 16-bit displacement is used.

b. Inappropriate absolute short address
Absolute addresses may be short (16-bit) or long (32-bit). On references
with absolute effective address, the default action is to use the

absolute short form if the address can be represented in 16 bits with
sign extension; otherwise, the absolute long form is used.

4-23

4.2.4 DC.W Define Constant Directive
The format for the DC.W directive is:
sp DC.W <operand>

The function of the directive is to define a constant in memory. The DC.W
directive can have only one operand (16-bit value) which can contain the actual

value (decimal, hexadecimal, or ASCII). Alternatively, the operand can be an
expression which can be assigned a numeric value by the assembler. The constant

is aligned on a word boundary as word (.W) size is specified.

An ASCII string is recognized when characters are enclosed inside single quotes
(*). Each character (7 bits) is assigned to a byte of memory, with the eighth
bit (MSB) always equal to zero. If only one byte is entered, the byte is left
justified. A maximum of two ASCII characters may be entered for each DC.W
directive.

Examples are:

001022 04D2 DC.W 1234 .Decimal number

001024 AAFE DC.W SAAFE Hexadecimal number

001026 4142 DC.W 'AB' ASCII string

001028 5443 DC.W '"TB'+1 Expression

00102a 4300 DC.W 'c’ ASCII character is left justified

4.3 ENTERING AND MODIFYING SOURCE PROGRAMS

User programs are entered into the Educational Computer RAM using the one-line
assembler/disassembler. The program is entered in assembly language statements
on a line-by-line base. The source code is not saved as it is converted
immediately to machine code upon entry. This imposes several restrictions on
the type of source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use memory
addresses and to enter data directly rather than use labels.

Also, editing is accomplished by retyping the entire new source line. Lines can
be added or deleted by moving a block of memory data to free up or delete the
appropriate number of locations.,

In order to more clearly describe the procedures used to enter, modify, and
execute a program, a specific example will be described. Figure 4-1 lists a
program that converts an ASCII coded number into its hexadecimal equivalent. An
ASCII character is in the lowest 8 bits of register DO when the program is
entered. Upon exiting, DO contains the equivalent hexadecimal digit (0 to F),
or an FF if the ASCII character does not correspond to a proper hex number.

4-24

GETHEX

GTHX1
EXIT
GTHX2

ERROR

CMP.B
BLT.S
CMP.B
BGT.S
AND.L
BRA
CMP.B
BLT.S
CMP.B
BGT.S
SUB.B
BRA
MOVE.L
JMP

#$30,D0
ERROR
#$39,D0
GTHX2
#SF,DO
*

#$41,00
ERROR
#546,D0
ERROR
#7,D0
GTHX1
#SFF,D0
EXIT

IS HEX NO. < 0?
NOT A HEX NO.
IS HEX NO. > 92

SAVE ONLY LOWER 4 BITS
END OF ROUTINE

IS HEX NO. < 'A'?

NOT A HEX NO.

IS HEX NO. > 'F'?

NOT A HEX NO.

MAKE IT SMALLER —— A=10

ERROR CODE

NOTE: Converts ASCII digit in lowest 8-bit of register DO into
hex value. Returns equivalent 0-F or FF on error in DO,

FIGURE 4-1.

Example Program to Convert ASCII Digit to Hexadecimal Value

For clarity, Figure 4-1 contains comments and labels. The program as it appears
after entry into the Educational Computer is shown later. Also, Figure 4-2
shows the ASCII character set for better understanding of the program.

b7 0] 0 (] 1 1 1 1
b8 0 0 1 1 0 0 1 1
G b6 0 1 0 1 0 1 0 1
b4 |63 |b2] b1 Column] © 1 2 3 4 5 [} y
Vhe L] 1] Row] Hex 0 1 2 3 4 5 [7
o0Jojo]o] o 0 NUL | oLe | sp 0 @ P K p
oloJo] 1] 1 SOH | DC1 I 1 A Q a q
oJo]1]o]l 2 2 STX | DC2 K 2 8 R b r
ojof1f] 3 3 eTx | DC3] 3 c S c s
0Ofjt1]o]o] 4 4 EOT | DC4 $ 4 D T d 1
oj1]o]1] s 5 ENQ | NAK | % 5 E U e u
ol1]1]o0] s 6 ACK | SYN & 6 F v f v
o1t 1] 1] 7 7 BEL | ETB ’ 7 G W g w
1fjojofof 8 8 BS [CAN { 8 H X h x
1Tl0[O] 1] 9 9 HT EM) 9 i Y i Y
1tofl1jofiw0] A LF | suB g - J p2 j z
TIO T[T B VT | E3C + ; K { K L
1ft1]JofJofl2]c FF FS < L \ [i
t][17fofl1[13]D CR GS - = M) m }
11 T1JolwaTc€E SO RS . > N A n ~
111]1}1]ws]F S! us / ? 0 _ 0 DEL

FIGURE 4-2. ASCII

4-25

Character Set

4.3.1 1Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory Modify
(MM) and Memory Display (MD) commands:

MM <address> ;DI

where CR sequences to next instruction
.CR exits command

and
MD[<port number>] <address> [count];DI

The Memory Modify (;DI option) is used for program entry and modification. When
this command is used, the memory contents at the specified location are
disassembled and displayed, followed by a "?". A new or modified line can be
entered if desired.

The disassembled line can be an MC68000 instruction or a DC.W directive. If the
disassembler recognizes a valid form of some instruction, the instruction will
be returned; if not (random data occurs), the DC.W $XXXX (always hex) is
returned. Because the disassembler gives precedence to instructions, a word of
data that corresponds to a valid instruction will be returned as the
instruction.

For the given example, the program will be entered starting at location $1000:

TUTOR 1.X > MM 1000;DI :
001000 1005 MOVE.B D5,D0 ?
4.3.2 Entering a Source Line

A new source line is entered immediately following the "?", using the format
discussed in paragraph 4.2.1:

TUTOR 1.X > MM 1000;DI
001000 1005 MOVE.B D5,D0 ? CMP.B #530,D0

When the carriage return is entered terminating the line, the old source line is
erased from the terminal screen, the new line is assembled and displayed, and
the next instruction in memory is disassembled and displayed:

TUTOR 1.X > MM 1000;DI

001000 0C000030 CMP.B #$30,D0
001004 FFFF DC.W SFFFF ?
NOTE

If a terminal with a printer only (no CRT) is used, such as a TI 700
series device, the printer will overwrite the previous line. There-
fore, a clear printout of the new entry will not be made. This also
happens if the printer on Port 3 is attached via the PA command.
Refer to Appendix B for operation with mechanical terminals.

4-26

Another program line can now be entered. Program entry continues in like manner
until all lines have been entered. A period is used to exit the MM command.

If an error is encountered during assembly of the new line, the assembler will

display the line unassembled with an "X" under the field suspected of causing a
problem, or an error message will be displayed. Errors are discussed in

paragraph 4.3.5.

4.3.3 Program Entry/Branch and Jump Addresses

Figure 4-3 shows the example program as it is inputted to the educational
computer assembler. Notice that the comments and labels used in Figure 4-1 are
not allowed; absolute addresses must be used for BRA and JMP instructions.

CMP.B #$30,D0 ' CMP.B #3$30,D0
BLT * BLT $1022
CMP.B #$39,D0 CMP.B #$39,D0
BGT * BGT $1014
AND.L #SF,DO AND.L #SF,DO
BRA * BRA *
CMP.B #$41,D0 CMP.B #$41,D0
BLT * BLT $1022
BGT * BGT $1022
SUB.B #7,D0 SUB.B #7,D0
BRA $100C BRA $100C
MOVE.L #$FF,DO MOVE.L #SFF,DO
JMP $1012 JMP $1012
a) First entry b) With correct branch addresses

FIGURE 4-3. Example Program as Entered into Educational Computer

4.3.3.1 Entering Absolute Addresses. The absolute addresses are probably not
known as the program is being entered. For example, when the second line is
entered (BLT.S ERROR in Figure 4-1), the user does not know that the branch
address (ERROR MOVE.B #S$FF,D0) will be $1022. However, the user can instead
enter an "*" for branch to self. After the correct address ($1022) is
discovered, the second line can be re-entered using the correct value. This
technique can be used for forward branches and jumps. It is not required for
backward branches and jumps, such as the last line of the example, because the
required address is already known. If the absolute address is not within the
range of a short address, a long address must be specified by appending .L to
the mnemonic (BGT.L *).

4-27

4,3.3.2 Desired Instruction Form. Care must be taken when entering source
lines to ensure that the desired instruction form is entered. If the quick form
of the instruction is wanted, it must be specified. For example:

005780 203C00000003 MOVE.L #3,D0 Assembles to the 6~byte instruction.
whereas

005780 7003 MOVEQ.L #3,D0 Assembles to the 2-byte instruction.
If the PC-relative addressing mode is desired, it must be specified. For
example:

001000 41F803F0 LEA $3F0,A0 Assembles $3F0 as an absolute address.
whereas

001000 41FAF3EE LEA $3F0(PC),A0 Assembles $3F0 as a PC-relative address.

4.3.3.3 Current Location. To reference a current location in an operand
expression, the character "*" (asterisk) can be used. Examples are:

007000 6022 BRA *+524
007000 6000FFFE BRA.L *
007000 60FE BRA *

4-28

4.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the Memory Display (MD) command with
the ;DI option., The MD command requires both the starting address and the byte
count to be entered in the command line. When the ;DI option is invoked, the
number of instructions disassembled and displayed will be equal to the number of
instructions whose op code (first word of any instruction) is contained within
the byte count. The DC.W directive will also be displayed for any words of data
contained within the byte count.

Two techniques can be used to obtain a hard copy of the program using the MD
command :

a. The Printer Attach (PA) command is first used to activate the Port 3
printer. A Memory Display (MD) to the terminal will then cause a listing
on the terminal and on the printer.

b. An MD3 (Memory Display to Port 3) command using the ;DI optlon will cause
a listing on the printer only.

Figure 4-4 shows a listing of the example program. Note in the example that $2D
bytes are specified in the MD command. Only $2C bytes are required for the
program, and the additional single byte does not constitute a valid DC.W or op
code; therefore, the last byte is not displayed.

Note also that the listing does not correspond exactly to that of Figure 4-3.

As discussed in paragraph 4.2.1.3, the disassembler displays in hexadecimal any
number it interprets as an address; all other numbers are displayed in decimal.

TUTOR 1.X > MD 1000 2D;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,00
golo0a 6E08 BGT.S $001014
00100C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D08 BLT.S $001022
00101A 6E06 BGT.S $001022
00101C 04000007 SUB.B #7,00
001020 60EA BRA.S $00100C
001022 203C0O00000FF MOVE.L #255,D0
001028 4EF81012 JMP $1012
TUTOR 1.X >

FIGURE 4-4. Example Program Listing

4-29

4.3.5 Error Conditions and Messages

There are five different conditions that can result in error messages while
using the assembler/disassembler. The response to the error condition can be to
abort the command (and thus the assembler), or to cause the assembler to ask for
a corrected input line. The error conditions are discussed in the following
paragraphs and include bus and address trap errors, improper characters, numbers
which are too large, and assembly errors.

4.3.5.1 Trap Errors. Two types of trap errors can be caused. One form, the
bus trap error, may be encountered if a location is accessed at which there is
no memory. Included in this error type are write cycles to ROM. The second
form is an address trap error. Instructions must always begin on an even
address; if not, an address trap error will result. Figure 4-5 shows examples
of these conditions.

TUTOR 1.X > MM E000Q;DI

4CDS5 0000E000 4CD4
BUS TRAP ERROR

PC=009192 SR=2704=.S7..Z.. US=EFAD7EBF S5=000007B4 No memory
D0=0000E044 D1=01964D4D D2=FFF24D4AD D3=00000000 at address
D4=0000B432 D5=00000000 D6=00000000 D7=00000FFD SE000

A0=000080C2 Al1=00008344 A2=00000454 A3=0000054E
A4=0000E000 A5=0000053A A6=0000053A A7=000007B4

009192 27AC1CFCO03F MOVE.L 7420(A4) ,63(A3,D0.W)
TUTOR 1.X > MM A000;DI
00A000 6502 BCS.S SA004 ? BEQ.S $A000
1285 0000A000 1280
BUS TRAP ERROR ROM at address
PC=0091EE SR=2700=.S7..Z.. US=EFAD7EBF SS=000007B4 $A000; cannot
D0=67FE0067 D1=00000001 D2=650202FF D3=00000000 be written to

D4=FFFFFFFE D5=FFFFFFFE D6=00000002 D7=00000000

A0=000007F5 Al=0000A000 A2=000007B1 A3=00000817

A4=0000A000 A5=0000081A A6=0000081A A7=000007B4

0091EE B400 cMP.B DO,D2
TUTOR 1.X > MM 3001;DI

4CD5 00003001 4CD4

ADDR TRAP ERROR Instructions
PC=009192 SR=2704=.S7..Z.. US=EFAD7EBF SS=000007B4 must begin at
D0=00003044 D1=01964D4D D2=FFF24D4D D3=00000000 an even address

D4=FFFFB432 D5=00000000 D6=00000000 D7=00000FFD
A0=000080C2 Al=00008344 A2=00000454 A3=0000054E
A4=00003000 A5=0000053A A6=0000053A A7=000007B4
009192 27AC1CFCO03F MOVE.L 7420(A4) ,63(A3,D0.W)

FIGURE 4-5. Examples of Trap Errors

4-30

Also note that BUS and ADDRESS trap errors also cause display of the exception
status from the stack, in hexadecimal characters:

XXXX AAAAAAAA IIII

where:
XXX Are miscellaneous status bits:

0-2 Function code

3 Instruction/Mot (0 = instruction, 1 = not)
4 Read/Mrite (0 = read, 1 = write)

5-15 Not defined

AAAAAAAA Is access address.

1111 Is instruction register (first word of instruction being
processed) . .

For details on this display, refer to the bus error and address error
descriptions in the MC68000 User's Manual, MC68000UM.

4.3.,5.2 Improper Character. If a character appears in the operand field that
does not belong to the class of characters specified or expected, an "X" will be
printed beneath the character string suspected of containing the improper
character, followed by a "?" to prompt re-entry of the line. For example, if a
$ (percent sign) is used to specify the binary class of characters, only the
digits 0 and 1 will be accepted.

TUTOR 1.X > MM 6000;DI S is not a decimal digit
006000 FFFF DC.W SFFFF ? MOVE.W #S',D0
006000 MOVE.W #S',DO

X?
TUTOR 1.X > MM 6000;DI 9 is not an octal digit
006000 FFFF DC.W SFFFF ? ADDA.L #@974,A6
006000 ADDA.L #@974,A6

X?
TUTOR 1.X > MM 6000;DI P is not a decimal digit
006000 FFFF DC.W SFFFF ? JMP $4000+PC
006000 JMP $4000+PC

X?

FIGURE 4-6. Examples of Improper Characters

4-31

4.3.5.3 Number Too Large. Another error type involves numbers which are too
large for the MC68000 to handle. Again, an "X" 1is printed under the number
suspected of containing the error, followed by a "?". Figure 4-7 gives an
example.

TUTOR 1.X > MM 4000;DI Value is larger than. 32 bits
004000 FFFF DC.W SFFFF ? LEA.L $937402110,A7
004000 LEA.L $937402110,A7

X?

FIGURE 4-7. Example of a number which is too large

4,3.5.4 Assembly Errors. An assembly error can occur due to an invalid op
code, an illegal addressing mode for a particular instruction, the format may be
in error (leading space omitted as an example), or the source line incorrect in
some other way. When the entry as written is not a valid MC68000 instruction,
the assembler echoes the source line up to and including the field in which the
error probably occurred. It also prints an "X" under the field suspected of
containing an error, followed by a "?" to prompt re-entry of the line.

The entire line must be re-entered in its correct form. If the error has not
been corrected or another is encountered, the error indicator will be returned.
After all errors have been corrected and the source line represents a valid
MC68000 instruction, the line will be assembled. The memory address, machine
code, and source code will be displayed and the next line will be disassembled.
A period (.) is used to exit the command. Examples of typical errors are shown
in Figure 4-8. :

4-32

Example 1

006700

006700

Example 2

001100

001100

Example 3

005300

005300

Example 4

007200

007200
Example 5

001500

001500

Examples 6

004900

004900

004800

004800

Invalid Op Code

FFFF DC.W $FFFF ? BEQU.S $6754
BEQU.S
X? BEQ.S $6754
6752 BEQ.S $6754
Missing Leading Space
FFFF DC.W SFFFF ?20R.B D5, (A6)
X? OR.B D5,(A6)
8B16 OR.B D5,(a6)
Unrecognizable Op Code
FFFF DC.W SFFFF ? MULSW 52,D3
MULSW
X? MULS.W 52,D3
C7F80034 MULS.W 52,D3
Invalid Size Extension
FFFF DC.W SFFFF ? MOVEQ.B #2,D1
MOVEQ.B #2,D1
X? MOVEQ.L #2,D1
7202 MOVEQ.L #2,D1
Invalid Addressing Mode
FFFF DC.W SFFFF ? ADDQ.B #7,A0
X? ADDQ.B #7, (A0)
5E10 ADDQ.B #7, (A0)
and 7 Branch Address Too Large
FFFF DC.W SFFFF ? BRA $10000
BRA $10000
X? BRA __ $8000
600036FE BRA $8000
FFFF DC.W $FFFF ? BRA.S $7000
BRA.S $7000
X? BRA.S $4902
BRA.S $4902
X? BRA.S $4860
605E BRA.S $4860
FIGURE 4-8. Examples of Assembly Errors

4-33

4.4 TESTING/EXECUTING PROGRAMS

After program entry, the next step is to execute and debug the program. With
the facilities provided by TUTOR, the user can run the program with trace
capabilities. The following paragraphs describe techniques to help this process
and, as before, the example program is used to illustrate.

4.4.1 System Initialization

The first step in running and testing a program is initialization of the
processor registers and any peripheral devices, as required. For simple
programs involving only the processor, this initialization concerns only the
MC68000 registers:

a. Bit 13 of the status register must be initialized to select either the
user state or the supervisory state for the MC68000. These operating
modes are discussed in the MC68000 User's Manual.

b. The stack pointer(s) (User's Stack Pointer and/or Supervisor Stack
Pointer) must be set to point to a valid RAM address. If a stack pointer
is left pointing to non-existent memory or to ROM, a bus trap error will
occur when the stack is used. Each stack pointer is a 32-bit register,
and both must be initialized if both operational modes will be used.

When writing programs on the MC68000 Educational Computer, the user must
not position either stack pointer within the RAM allocated to TUTOR —-—
that is, RAM addresses below $900 should not be used. Also, since the
stack grows from high memory to low memory (i.e., the stack pointer value
decreases as information is placed on the stack), enough room should be
left between the initial stack pointer value and $900. The size of the
stack area should be large enough to accommodate the maximum number of
words that will ever be stacked at one time. A final caution is to not
overlap stack areas. NOTE: The Trace command requires a supervisor
stack area of at least six bytes.

c. Address registers (A0-A6) should be initialized as required by the
program,

d. Data registers (D0-D7) should be initialized as required by the program.

e. The program counter (PC) should be set to the beginning address of the
program.

For simple instructional programs, register initialization through the TUTOR
comnands is acceptable. For more comprehensive programs, however,
initialization of the processor and all other resources should be an integral
part of the target program. Programs should be written with the concept that
they will ultimately have to run in a stand-alone manner and they must control
all resources. TUTOR would not be a part of the target program.

4-34

Figure 4-9 shows the initialization procedure for the ASCII to hex digit
conversion routine. The registers are displayed with the DF command to check
their contents. Bit 13 of the status register indicates the supervisory mode is
operational. Because the program can run in either mode, it is not necessary to
change modes. The program counter (PC) is set to $1000, which is the beginning
address of the program. The supervisory stack pointer is set to $0F00 (the
user's stack pointer is not used and thus is not initialized). Finally, $31
(ASCII value for 1) is entered into data register DO. The program expects to
find an ASCII character in the lowest byte of DO.

TUTOR 1.X > DF

PC=00000000 SR=2704=.S7..Z.. US=00002000 SS=000007BC
D0=0000000A D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 Al=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=000007BC

000000 - 0000 DC.W $0000

TUTOR 1.X > .PC 1000
TUTOR 1.X > .SS OF00
TUTOR 1.X > .DO 31

TUTOR 1.X > DF
PC=00001000 SR=2704=.S7..Z.. US=00002000 SS=00000F00

DO=00000031 D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 A1=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001000 0C000030 CMP.B #48,D0

TUTOR 1.X > BR 1012

BREAKPOINTS
001012 001012

FIGURE 4-9. Initializing Registers and Setting Breakpoint for Example Program

4.4.2 Setting Breakpoints

If there are no errors in the program, processing should proceed to the
termination instruction -- BRA.S $001012 -- at address $1012 (branch always to
self). Register DO should contain value 'l' at that time. Normally, the
processor would continue to loop at this address, but a breakpoint will be
inserted so the program can be halted and the results checked. Figure 4-9 also
shows this breakpoint being entered.

Up to eight breakpoints can be used at one time. With complex programs,
breakpoints and the trace function are valuable debugging tools.

4-35

4.4.3 Program Execution

The GO (or G) command causes the user program to execute making use of
breakpoints. Execution will stop when a breakpoint is encountered, when
exception processing is caused by an abnormal program sequence, or when the user
intervenes through the ABORT or RESET pushbuttons on the board. The GO command
sequence begins by tracing one instruction, setting any breakpoints, and then
freerunning. The GT and GD commands can also be used to execute a program with
a temporary breakpoint and without breakpoints, respectively.

Figure 4-10 shows execution of the example program (GETHEX). Execution begins
at address 51000 where the program counter was initialized. Execution is halted
at the breakpoint address $1012. At this point, register DO contains the value
'1', which is the expected number. It appears that the conversion program has

performed correctly.

To further test the program, a different ASCII value is entered; DO is set to
$45, which is the representation for 'E' —— a valid hex digit. Upon execution,
the program still goes until the breakpoint at $1012; however, DO now contains
value 'FF', which indicates an invalid character. Therefore, there is an error
in the program, and it must be further debugged.

TUTOR 1.X > G
PHYSICAL ADDRESS=00001000

AT BREAKPOINT

PC=00001012 SR=2700=.S7..... US=00002000 SS=00000F00

D0=00000001 D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 A1=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001012 60FE BRA.S $001012

TUTOR 1.X > .DO 45

TUTOR 1.X > G 1000
PHYSICAL ADDRESS=00001000

AT BREAKPOINT

PC=00001012 SR=2700=.57..... US=00002000 SS=00000F00
D0=000000FF D1=00000000 D2=00000000 D3=00000000
D4=B0000018 D5=0000003F D6=00000000 D7=00000000
A0=00010040 Al1=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00
001012 60FE BRA.S $001012

FIGURE 4-10. Execution of Example Program

4-36

4.4.4 Trace Mode

The trace mode is another major tool, other than breakpoints, used in debugging
software. The basic trace command, TR or T, executes instructions, one at a
time, beginning at the 1location pointed to by the program counter. After
execution of each instruction, the processor registers are displayed. The trace
command can be used to trace a single instruction or to trace multiple
instructions if a <count> number is entered.

As shown in Figure 4-11, the example program will be traced, one instruction at
a time, to discover the error(s) in it. Register DO is again initialized to $45
and the program counter is set at $1000.

TUTOR 1.X > .DO 45 cr
TUTOR 1.X > .PC 1000 cr

TUTOR 1.X > DF cr -

PC=00001000 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al1=12345678 A2=00000547 A3=0000C000

A4=00001030 AS5=0000053A A6=00000541 A7=00000F00

001000 0C000030 CMP.B #48,D0

TUTOR 1.X> T cr

PHYSICAL ADDRESS=00001000

PC=00001004 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001004 6D1C BLT.S $001022

TUTOR 1.X > cr
PHYSICAL ADDRESS=00001004

PC=00001006 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

DA=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001006 0C000039 CMP.B #57,D0

TUTOR 1.X > cr
PHYSICAL ADDRESS=00001006

PC=0000100A SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

DA=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

00100A 6EO8 BGT.S $001014

FIGURE 4-11. Trace Sequence for Example Program (sheet 1 of 2)

4-37

TUTOR 1.X > cr

PHYSICAL ADDRESS=0000100A

PC=00001014 SR=2700=.57..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001014 0C000041 CMP.B #65,D0

TUTOR 1.X > cr
PHYSICAL ADDRESS=00001014
PC=00001018 SR=2700=.S7..... US=00000F00 SS=00000F00
DO=00000045 D1=0000C000 D2=FFFFC000 D3=00000000
D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012
A0=00001000 Al=12345678 A2=00000547 A3=0000C000
A4=00001030 A5=0000053A A6=00000541 A7=00000F00
001018 6DO8 BLT.S $001022

TUTOR 1.X > cr

PHYSICAL ADDRESS=00001018

PC=0000101A SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

00101A 6E06 BGT.S $001022

TUTOR 1.X > cr
PHYSICAL ADDRESS=0000101A

PC=00001022 SR=2700=.5S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001022 203CO00000FF MOVE.L #255,D0

FIGURE 4-11. Trace Sequence for Example Program (sheet 2 of 2)

Each time the registers are displayed by the Trace or DF command, a line of
source code is also displayed. The source line displayed is pointed to by the
current program counter value and is the next instruction to be executed. The
first instruction to be executed -- CMP.B #48,D0 -- is pointed to by the initial
pC value and is shown following the first group of registers in Figure 4-1l.
Invoking the trace command causes this instruction to be executed. The
resultant register values and the next instruction are then displayed. The PC
has been incremented by four to point at the next instruction ($1004). Since DO
has a value greater than $30, the least significant four bits of the status
register have been cleared as a result of the compare instruction.

4-38

once the trace mode has been entered, the prompt includes a colon (i.e.,
TUTOR 1.X :>). While in the trace mode, entering the single character carriage
return (CR) will cause one instruction to be traced. 1In the example, the next
instruction — BLT.S $001022 —- is executed by entering a carriage return
following the prompt. Because the status bits from the previous instruction
indicate that DO is not less than $30, the branch to address $001022 is not
made. Program tracing continues in this manner until an incorrect condition is
found.

After the value in DO is compared to $41 (CMP.B #65,D0), a branch is made to
address $1022 if DO is less than $41 (BLT.S $001022), or the next instruction
(BGT.S $001022) causes a branch to $1022 if DO is greater than $41. Thus, the
only time the branch to the error sequence is not taken is if DO equals $4l.
This, then, is incorrect since the sequence excludes hex digits $B through $F.
The second branch should be taken only if DO is greater than $46. A comparison
between Figures 4-1 and 4-3 shows that the instruction CMP.B #$46,D0 has been
omitted from the program as entered.

4.4.5 Inserting and Deleting Source Lines

Lines are added to or removed from source programs with the Block Move (BM)
command. The assembler/disassembler does not support insert line and delete
line commands. Insertions are accomplished by moving a portion of the program
to a higher or lower memory location, thereby leaving a gap between two sections
of the program. The new source lines can be inserted into this gap. A gap can
be closed up or lines can be deleted by moving a section of the program in the
opposite direction.

In Figure 4-12, the missing source line is inserted into the example program.
The last five source lines are moved to a higher memory address, using the Block
Move command. (Refer also to Figure 4-4 in paragraph 4.3 for memory addresses.)
Since the number of bytes required by the additional line(s) is not known, the
gap is made larger than necessary. The additional source line is inserted at
address $101A, using the MEX68KECB assembler. Figure 4-12 shows the source
lines as they look at this stage. The gap is closed up using BM, and a second
source listing is shown.

Notice, however, that several of the branch addresses are now incorrect and
would cause a branch to the wrong instruction. Since absolute addresses rather
than labels are used, all branch and jump addresses must be checked any time any
or all of the lines in a program are moved. If both the branch instruction and
the destination of that instruction are within the same program section (i.e.,
the section that was moved and the section that was not moved), the branch
addresses should be correct because they are assembled using relative addressing
and no extra bytes have been inserted between the instruction and the
destination. I1f, however, source lines have been inserted between the
instruction and the destination, the branch address will be incorrect. The same
rule also applies to any type of program counter relative addressing, not just
to branch addresses.

Any absolute addresses, including jump addresses, will be incorrect if the

destination has been moved to a different address. Otherwise, they should be
correct.

4-39

TUTOR 1.X > BM 101A 102B 1020
PHYSICAL ADDRESS=0000101A 0000102B
PHYSICAL ADDRESS=00001020

TUTOR 1.X > MM 101A;DI

00101A 6EQ6 BGT.S $001022? CMP.B__ #3546,D0
00101A 0C000046 CMP.B #$46,D0

00101E 0007 DC.W $0007 2.

TUTOR 1.X > MD 1000 32;DI

001000 0C000030 cMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
0olo00C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 ~ 6D08 BLT.S $001022
0oolola 0C000046 CMP.B #70,D0
00101E 0007 DC. $0007
001020 6E06 BGT.S $001028
001022 04000007 SUB.B #7,D0
001026 60EA BRA.S $001012
001028 203CO00000FF MOVE.L #255,D0
00102E 4EF81012 JMP $1012

TUTOR 1.X > BM 1020 1031 10l1E
PHYSICAL ADDRESS=00001020 00001031
PHYSICAL ADDRESS=0000101E

TUTOR 1.X > MD 1000 30;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
0olo00C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D08 BLT.S $001022
00101A 0C000046 CMP.B #70,D0
00101E 6E06 BGT.S $001026
001020 04000007 SUB.B #7,D0

001024 60EA BRA.S $001010
001026 203CO00000FF MOVE.L #255,D0
00102C 4EF81012 JMP $1012

FIGURE 4-12. Inserting Missing Source Line into Example Program

4-40

In all cases, the destination address should not be moved so that it is out of
the range of the address mode being utilized. In the example, the instructions
at addresses $1004, $1018, and $1024 must be changed to correct the destination
addresses. Figure 4-13 lists the source program after these changes have been
made. Testing shows that the ASCII to hex conversion program is now correct.

TUTOR 1.X > MD 1000 30;DI

001000 0C000030 CMP.B #48,D0
001004 6D20 BLT.S $001026
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
0olo0C 02800000000F AND.L #15,D0
001012 60FE BT.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D0C BLT.S $001026
0o10lAa 0C000046 CMP.B #70,D0
00101E 6E06 BGT.S $001026
001020 04000007 SUB.B #7,D0
001024 60E6 BT.S $00100C
001026 203CO00000FF MOVE.L #255,D0
00102C 4EF81012 JMP $1012

FIGURE 4-13. Corrected Example Program Listing

4-41

4,5 SAVING PROGRAMS

After a program has been created and tested, a permanent copy is desired for
both documentation purposes and to avoid re-entering it the next time it is to
be executed. There are several methods available for saving programs, depending
on the optional hardware that is available., Programs can be saved on tape or
can be uploaded to a host processor via Port 2 of the MEX68KECB. Once a program
has been sent to the host, it can be saved on the host's mass storage media.
Uploading to a host requires a program at the host to input the program
S-records from the RS-232 port and save them either in RAM or directly onto the
mass storage media. Refer to Appendix A for a description of S-records.

4.5.1 Saving Programs on Tape

Whatever the storage media selected, the DUMP (DU) command is used to convert
the program to S-record format and send it to the specified port. For a
detailed description of the DUMP command, see paragraph 3.5.8. The Port 4
option must be selected to dump to tape.

Before programs can be stored, a cable must be constructed to interface the tape
player to the MEX68KECB (paragraph 2.5.3). Hook up the cable and turn the tape
player on. Position the tape in the desired location. It is best to leave a
relatively large gap between programs, as this makes it easier to reposition the
tape before loading a program. The tape can be positioned anywhere within the
gap which precedes the desired program. The tape counter, if one is available,
is useful in quickly positioning the tape in the correct spot.

The beginning and ending addresses of the program must be known because these
parameters are required by the DUMP command. For the example presented in this
chapter, the addresses are:

. Beginning $1000
. Ending $102F

Type in the DUMP command line but do not enter a carriage return yet. The
command for the example program is:

TUTOR 1.X > DU4 1000 102F

Press both the play and record buttons on the tape player. After all the leader
has gone by and the motor 1is up to speed, enter a carriage return at the
terminal. When the TUTOR 1.X > prompt is again displayed, indicating that the
DUMP command has finished, stop the tape player. After repositioning the tape
to the beginning of the records just saved, the VERIFY (VE) command should be
used to check the tape against the program. Paragraphs 3.5.26 and 4.5.2
describe using the VERIFY command.

4-42

4.5.2 Loading and Verifying Programs from Tape .

To prepare for loading a program from tape, position the tape before the
beginning of the desired program. Do not start the tape player yet, or a
portion of the program may be missed by the MEX68KECB. Enter the LOAD command
line shown below, including the carriage return.

TUTOR 1.X > LO4 cr

The MEX68KECB is now looking for information from Port 4. Start the tape player
by depressing the play button only. When the prompt is received, stop the tape
player. The program should now be in RAM and can be examined with the MEMORY
DISPLAY (MD) and MEMORY MODIFY (MM) commands.

The VERIFY command (paragraph 3.5.26) should be used to ensure that the tape has
been properly loaded. The VERIFY command reads the tape but instead of putting
the information into memory, it makes a comparison between the contents of
memory and the records read from tape; the comparison is made after the
S-records have been converted back to hex. The sequence of steps for the VERIFY
directive is very similar to those required for the LOAD — position the tape,
enter the command line including carriage return, start the tape, wait for the
prompt, turn the tape player off. The command line is:

TUTOR 1.X > VE4 cr

If the entire program verifies correctly, only the prompt will be returned. If
differences are found between the tape and the RAM, these differences will be
listed. For example, in the program example, verify errors can be forced by
modifying the RAM after the program has been loaded.

TUTOR 1.X > LO4 cr
TUTOR -1.X > MM 1000;W cr

001000 0C00? cr
001002 0030? 0123. cr

TUTOR 1.X > VE4 cr
51131000- = 00030— e e e T e T e T e T e T e T e T e T e T e T
ERROR

TUTOR 1.X >

The contents of locations that did not verify are listed as read from tape.
Locations within the same S-record that did verify are represented by dashes.
In the example, locations $1002 and $1003 which were changed with the MEMORY
MODIFY command did not verify, and their correct (original) contents are shown.
After all the errors have been listed, the message ERROR is printed to indicate
that one or more errors have been found.

Verification errors can also be generated by errors on the tape. If the output
level (volume) from the tape player is incorrect, the MEX68KECB may not be able
to read the tape properly. Adjusting the volume control, usually about
mid-range, should solve this problem., If different tape players are used, the
volume may need to be readjusted.

4-43

Errors may also result if the particular tape player used does not invert the
information — which makes no difference with audio tapes but which will affect
the MEX68KECB. The MEX68KECB is factory-jumpered to receive inverted data. The
incoming data is inverted by the ECB receiver hardware; however, since the
receiver firmware expects a non-inverted signal, a second inversion must be
provided. The MEX68KECB expects inverted data from the tape player. If the
tape player used does not invert the data, an additional inversion can be done
on the MEX68KECB with a cut and jump option. See Chapter 6 for the details.

If the S-records are put onto the tape by another computer (i.e., not an
MEX68KECB) , the tape format used may not be compatible with the Educational
Computer. The Educational Computer uses frequency shift keying (FSK) to code
the data. A 'l' is represented by one period of a 50% duty cycle 2000 Hz square
wave., A '0' is represented by one period of a 50% duty cycle 1000 Hz square

wave,

When downloading or verifying files from a remote host to the ECB, it is
possible that data will be lost for various reasons such as losing an
S-record(s) while printing out errors in a previous S-record. To prevent this,
the ECB will send characters to the host to stop and start the transferral of
the S-records. Various hosts require different characters to do this, and some
have no provision for this kind of flow control.

The appropriate start and stop characters should be entered by the user in the
first and second bytes of the options variable. The PF command displays the
address of the 6-byte variable called OPTIONS.

TUTOR 1.X > PF XXXXXX is the absolute address of the
6-byte variable OPTIONS

FORMAT= 15 15
CHAR NULL=00 00
C/R NULL=00 00
OPTIONS@XXXXXX

The first byte is the transfer on (start) character and the second byte is the
transfer off (stop) character. The other four bytes are used by the TM command
and when mechanical terminals are used. Refer to paragraphs 3.5.21 and 3.5.23
and Appendix B for a discussion of these bytes.

Both the start and stop characters are initialized to $00 (NUL) on RESET. The
bytes can be changed to effect data flow control. With an EXORciser or EXORmacs
as host and loading from MDOS or VERSAdos, the flow can be halted with CTRL W
(617) and resumed with any other character (such as a space — $20).
Alternatively, some time-share systems use the device control characters DCl
($11) and DC3 ($13) as the start and stop characters, respectively.

4.,5.3 Upload to a Host

Uploading to a host is another method of saving programs and it also uses the
DUMP command. A file is usually uploaded through Port 2. In order to upload
successfully, the host must contain a program to input S-records from the RS-232
port and save them. The Educational Computer Board can upload to any host which
has an RS-232 port and the required program. Motorola's EXORmacs and EXORciser
development systems are both suitable hosts.

4-44

4.5.3.1 EXORciser as Host. Before sending S-records to the EXORciser, it must
first be conditioned to receive them, To do this, enter the transparent mode
(TM, paragraph 3.5.23), which allows the terminal to 'talk' directly to the
host/EXORciser. The EXbug LOAD command (refer to the EXORciser User's Guide)
will be used to input the S-records from the educational computer, convert them
to hex, and store them in RAM. After receiving the EXbug prompt, key in the
LOAD directive and select the S option, which loads a single file.

When connected to an EXORciser I, it is necessary to type an "X" following the
TM command in order for the EXORciser to respond. For EXORciser II, it should

be Control X, as follows:

EXORciser I EXORciser II

TUTOR 1.X> ™M cr TUTOR 1.X> ™ cr

TRANSPARENT EXIT=$01=CTL A *TRANSPARENT* EXIT=$01=CTL A

X XC (CTRL X)

EXBUG 1.X LOAD EXBUG 2.X

SGL/CONT S E* LOAD cr

AC (CTRL A) s/C'S

TUTOR 1.X> DU2 3000 302F cr A€ (CTRL A)

PHYSICAL ADDRESS 00003000 0000302F TUTOR 1.X> DU2 3000 302F cr

TUTOR 1.%X> PHYSICAL ADDRESS 00003000 0000302F
TUTOR 1.X>

The EXORciser is ready to accept the S-records. Exit the transparent mode by
entering the exit character —— usually CTRL A. The command line to upload is
very similar to the command for dumping to tape. The required parameters are
again the beginning and ending addresses and the port option is Port 2.

When the prompt is returned, the entire file has been uploaded. The next step
is to transfer the file to disk. Re~enter the transparent mode; several
carriage returns may be required before the EXbug prompt is received.

TUTOR l1l.X > ™M cr TUTOR 1l.X > ™M cr
cr cr cr CTRL X
EXbug X.X EXBUG 2.X

When the prompt is received, boot MDOS and use the MDOS utility ROLLOUT to
create the disk file.

Several types of problems may be encountered in the sequence Jjust described.
The EXORciser must contain enough RAM addressed at the same location as the
program being transferred. If this is not the case, the program can be moved to
a different address within the MEX68KECB, using the BLOCK MOVE (BM), paragraph
3.5.2, before it is uploaded. Also be aware that ROLLOUT cannot roll out memory
which is overlaid by either MDOS or the ROLLOUT command itself. These software
programs occupy address space $0-$3000. Refer to the ROLLOUT command
description in the EXORdisk II/III system user's guide.

4-45

A second potential problem involves the formatting of Port 2. The EXORciser
processes each S-record after it is read before reading the next record. This
requires the MEX68KECB to break between each S-record to allow time for
processing by the EXORciser. This is effectively accomplished by inserting a
string of nulls after each S-record. Do this with the format Port 2 command.

TUTOR 1.X > PF2 cr

FORMAT= 152 cr

CHAR NULL=XX ? cr

C/R NULI=XX ? 10 cr (16 nulls after each line)
TUTOR 1.X >

The number of nulls required varies with the baud rate but should never be
greater than $10 (i.e., 16).

4.5.3.2 EXORmacs as Host. Transferring files to an EXORmacs is accomplished in
a slightly different manner than transferral to an EXORciser. Using the
VERSAdos utility UPLOADS, the file can be transferred directly to disk,
bypassing the intermediate step. In order to use the UPLOADS utility, Port 2 of
the Educational Computer must be connected to the MCCM in the EXORmacs.

Before attempting to transfer a file, enter the transparent mode and bring up
VERSAdos. Call up the UPLOADS utility, giving the file name. Return to TUTOR.
Now dump the file to Port 2 in the same way as before.

TUTOR 1.X > DU2 1000 102F cr
TUTOR 1.X >

A disk file has been created. Re-enter the transparent mode to communicate with
UPLOADS for any error messages.

4-46

4.,5.4 Download from a Host

Files are retrieved from the host and checked for load errors with the LOAD and
VERIFY commands. The files must be in S-record format. Besides retrieval of
programs created using the MEX68KECB assembler/disassembler, the LOAD command is
a handy tool for loading MC68000 language programs created using the host's
resident or cross assembler. Such assemblers currently exist for the EXORmacs,
EXORciser, and other potential hosts.

4.5.4.1 EXORciser as Host. The download sequence from an EXORciser is slightly
different, depending on whether the files were originally uploaded or were
created within the host. The file to be downloaded must be in S-record format.
The ROLLOUT command does not create such a file. 1In this case, the file can be
easily converted to S-record format, using the MDOS utility BINEX.

Once an S-record format is available, the download procedure is the same. MDOS
should be loaded under the transparent mode and then control should be returned
to TUTOR. LOAD and VERIFY can now be used as described in the section on
loading and verifying from tape. The Port 2 option should be selected and a
directive must be sent to the EXORciser via the RS-232 port. Any MDOS directive
which sends the S-record formatted file to the RS-232 port can be used.

TUTOR 1.X > LO2 ;=COPY GETHEX.LX,#CN cr
TUTOR 1.X >

or

TUTOR 1.X > LO2 ;=LIST GETHEX.ILX cr
TUTOR 1.X >

Care must be taken to assure that any files created at the host are addressed
within the user RAM area on the MEX68KECB. Also be aware that when disk files
are created, entire sectors are allocated; any extra locations are filled with
zeros. Therefore, the file may be slightly longer than the original program.

4.5.4.2 EXORmacs as Host. The download sequence from the EXORmacs is virtually
the same as from an EXORciser. After booting VERSAdos in the transparent mode,
return to TUTOR. Use the LOAD and VERIFY commands with the VERSAdos directive
given in the ASCII string following the LOAD or VERIFY command as before. In
this case, however, the S-record files are usually designated by the suffix MX

rather than LX.

TUTOR 1.X > LO2 ;=LIST GETHEX.MX cr
TUTOR 1.X >

The same cautions apply with regard to program addresses and disk files.

4-47/4-48

CHAPTER 5

TRAP 14 HANDLER

An additional function contained within the MC68000 Educational Computer

firmware is a function called the TRAP 14 handler.

This function can be called

by the user program to utilize various routines within TUTOR, to call special

routines, and to return control to TUTOR.
handler and how it is used.

5.1

5.1.1
5.1.2
5.1.3
5.2

5.3

5.3.1
5.3.2
5.3.3
5.3.4

5.3.5

WHAT IS THE TRAP 14 HANDLER? .vcceeescccocascsorsessaconcsssscanes
TypesS Of EXCepPtionS sueeeecsescscesccccsccscasscssssssccsascasse
MC68000 Exception ProCesSing .ceeeeesceccccsccsceccsscsssoscsans
Trap 14 HANAler .eeeccesoccccscssassessssssesssssccassssasssses

TRAP 14 CALLING SEQUENCE +ecvececssssssscccccoocccsasosssssscsscss

TRAP 14 FUNCTIONS cveascacssscvcsssccasascccvssscesssscsososcscee
Input/QUtpPut FUNCLIONS seveeccosccosccsscssccsscvcsscsssssccsse
Conversion FUNCLIONS seeeecsesssvccsesesessscsescssscnssscanens
Buffer Control FUnNCtionS sceeeecsescecssoscsosscescscacscscccas
Transfer Control to TUTOR .ceesecccascasevssccccossccscsssossases

Inserting Additional chtions ® 0 00 0500550 G 0O OE OO OIS NSO PESEEEES

5-1/5-2

This chapter describes the TRAP 14

Page
5-3
5-3
5-3
5-4
5-4
5-6

5-9
5-10
5-12

5-13

"CHAPTER 5

TRAP 14 HANDLER

5.1 WHAT IS THE TRAP 14 HANDLER?

The TRAP 14 handler is a function contained within TUTOR that allows system
calls from user programs. The system calls can be used to access selected
functional routines contained within the firmware, including ASCII/hex
conversion, input routines, output routines, etc. The user is then not required
to reproduce these functions in his own program.

5.1.1 Types of Exceptions

Exceptions are inputs to the MC68000 which change the "normal" flow of a
program. They can be generated by either internal or external causes. There
are three basic kinds of exceptions recognized by the MC68000:

a. Exceptions which cause the instruction currently being executed to be
aborted. These consist of reset, bus error, and address error
exceptions.

b. Exceptions which allow the current instruction to be completed before
processing the exception. These are trace, interrupt, illegal
instruction, and privilege violation exceptions. 1Illegal instructions
and privilege violations cause the current instruction to be executed as
an NOP instruction.

c. Exceptions which occur as part of the normal processing of instructions.
The TRAP, TRAPV, CHK, DIVS, and DIVU (when dividing by zero) instructions
are included in this group.

5.1.2 MC68000 Exception Processing

Exception processing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register. After the copy is made, the
Supervisor mode (S) bit is asserted, putting the processor into the supervisor
privilege state. Also, the Trace mode (T) bit is negated. For the reset and
interrupt exceptions, the interrupt priority mask is also changed to match the
level of the interrupt causing the exception.

In the second step, the vector number of the exception is determined. For
interrupts other than auto-vectored interrupts, the vector number is obtained by
a processor fetch from an external device, classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the vector
number. This vector number is then used to generate the address of the
exception vector.

The third step is to save the current processor status, except for the reset
exception. The current program counter value and the saved copy of the status
register are stacked, using the supervisor stack pointer. The program counter
value stacked usually points to the next unexecuted instruction; however, for

bus error and address error, the value stacked for the program counter is
unpredictable and may be incremented from the address of the instruction which
caused the error. Additional information defining the instruction/operation
causing the error is stacked for the bus error and address error exceptions.

The last step is the same for all exceptions. The new program counter value is
fetched from the exception vector. The processor then resumes instruction
execution. The instruction at the address given in the exception vector is
fetched, and normal instruction decoding and execution are started.

5.1.3 Trap 14 Handler

Traps are instructions which generate exceptions. The TRAP instruction can
generate one of 16 exception vectors. Traps are useful for implementing system
calls from user programs. The TRAP 14 handler within TUTOR serves this purpose.
The TRAP 14 handler permits selected routines from TUTOR to be accessed by the
user's target programs. In addition, it allows the user to append his own
routines to the TRAP 14 handler and redefine the functions provided.

Up to 255 different functions can be accessed via the TRAP 14 handler. When
using the TRAP 14 handler in TUTOR, the number of the desired function is passed
to the TRAP 14 handler in the least significant byte of register D7. The
handler uses this function number to find the address of the selected routine in
a lookup table, and transfers control to that address. Most of the defined
functions return to the user's program upon completion; the exceptions are
function numbers 229 and 228, which return to TUTOR.

Of the 255 available functions, 127 are reserved by Motorola (numbered 128
through 254). It is suggested, therefore, that the user assign numbers 0
through 127 to user routines.

5.2 TRAP 14 CALLING SEQUENCE
The calling sequence is:

MOWE.B #<function number>,D7
TRAP #14

where <function number> is a number from 0 through 254, which represents the
selected function. Calls to functions not defined result in the message
'UNDEFINED TRAP 14'; program control is passed to TUTOR.

The appropriate function number is placed in the least significant byte of
register D7 before executing the TRAP instruction. A summary of the defined
functions and the corresponding function numbers is shown in Table 5-1.

TABLE 5-1. TRAP 14 Function Summary

FUNCTION
FUNCTION NAME FUNCTION DESCRIPTION
255 -— Reserved function - end of table indicator.
254 _ Reserved funciton - used to link tables.
253 LINKIT Append user table to TRAP 14 table,
252 FIXDADD Append string to buffer.
251 FIXBUF Initialize A5 and A6 to 'BUFFER'.
250 FIXDATA Initialize A6 to 'BUFFER' and append string to buffer.
249 FIXDCRLF Move 'CR', 'LF', string to buffer.
248 OUTCH Output single character to Port 1.
247 INCHE Input single character from Port 1.
246 - Reserved function.
245 -_— Reserved function.
244 ' CHRPRINT Qutput single character to Port 3.
243 OUTPUT Output étring to Port 1,
242 OUTPUT21 Output string to Port 2.
241 PORTIN1 Input string from Port 1.
240 PORTIN20 Input string from Port 2.
239 TAPEOUT OQutput string to Port 4.
238 TAPEIN Input string from Port 4.
237 PRCRLF Output string to Port 3.
236 HEX2DEC Convert hex value to ASCII encoded decimal.
235 GETHEX Convert ASCII character to hex.
234 PUTHEX Convert 1 hex digit to ASCII.
233 PNT2HX Convert 2 hex digits to ASCII.
232 PNT4HX Convert 4 hex digits to ASCII.
231 PNT6HX Convert 6 hex digits to ASCII.
230 PNT8HX Convert 8 hex digits to ASCII.
229 START Restart TUTOR; perform initialization.
228 TUTOR Go to TUTOR; print prompt.
227 OUT1CR Output string plus ‘CR', 'LF' to Port 1.
226 GETNUMA Convert ASCII encoded hex to hex.
225 GETNUMD Convert ASCII encoded decimal to hex.
224 PORTINLN Input string from Port 1; no automatic line feed.
223-128 -— Reserved.
127-0 -— User-defined functions.

5-5

5.3 TRAP 14 FUNCTIONS
There are five groups of functions defined by the TRAP 14 handler. These are:

a. Input/Output single character or character strings to or from I1/0 ports.
b. Conversion routines:

Hex to decimal (ASCII format)

Hex to ASCII - 1, 2, 4, 6, or 8 digits
ASCII (one digit) to hex

ASCII formatted hex to hex

ASCII formatted decimal to hex

c¢. Buffer control routines.
d. Transfer control to TUTOR with/without performing initialization.
e. Routines to insert additional user functions into TRAP 14 lookup table.

NOTE: The expected convention when using the TRAP 14 handler is independent
user and supervisor stacks.

5.3.1 Input/Output Functions

The Input/Output group of TRAP 14 functions includes routines to move
information from/to the four available I/0 ports to/from memory. They are
useful for receiving commands from the terminal and displaying responses at the
console and at the printer. Communication with a host is also possible.

There are five input routines which can be called via the TRAP 14 handler. A
buffer string can be received from Port 1, 2, or 4. Input is not received from
Port 3 because this port is typically connected to a printer. Single character
input can also be received from Port 1. The four string input routines -—
PORTIN1, PORTININ, PORTIN20, and TAPEIN — receive input from Port 1, Port 1,
port 2, and Port 4, respectively. ASCII coded strings are typically used
although this is not necessary.

The first three routines accept input until the ASCII code for a carriage return
($0D) is received signifying the end of the string. The last routine, TAPEIN,
recognizes a line feed ($0A) as the end of string jndicator. Because it is used
exclusively with S-records, TAPEIN expects the first character of each string to
be an ASCII 'S' ($53); characters prior to the 'S' are ignored.

All of the string input routines move characters from the appropriate port to a
buffer pointed to by register A6. Before using a TRAP 14 call, the user must,
in some cases, initialize parameters other than register D7. For the string
input calls, A6 must be initialized to point to the next free location in the
buffer where the characters will be stored. Register A5 must point to the start
address of the buffer. A comparison is made betwen A5 and A6 each time a
character is received, and the buffer size is not allowed to grow larger than
127 bytes (characters).

Upon completion, the routines PORTIN20 and TAPEIN leave A6 pointing to the last
character in the buffer. PORTIN1 and PORTININ leave A6 pointing to the last
character plus one (i.e., the next free location). All incoming bytes are
masked to seven bits by ANDing them with the value $7F. Control characters
(ASCII codes less than $20) are ignored by PORTIN20 and TAPEIN, while PORTINI
and PORTININ ignore nulls ($00).

5-6

Both PORTIN1 and PORTININ will echo the characters back out to Port 1. The only
difference between these two routines is that PORTINl will send both a carriage
return and a line feed back to Port 1 upon receipt of only a carriage return.
PORTININ sends only a carriage return. Table 5-2 summarizes the input
functions.

Single character input is available only for Port 1. Using the routine INCHE, a
single character is input from Port 1 and transferred to the lowest byte of
register DO (the remainder of DO is unchanged). No additional parameters are
required for this function other than the function number which is passed to the
TRAP 14 handler in register D7. Upon completion, DO contains the received
character and A0 has the base address of the serial interface device, the
MC6850, associated with Port 1. 1In addition, register D1 is used by INCHE and
is not restored.

There are Seven output routines corresponding to the five input functions with
two additions. Both string and single character output is provided for Port 3;
there are no corresponding input functions. The five string functions are
OUTPUT, OUTLCR, OUTPUT21, PRCRLF, and TAPEOUT corresponding to Ports 1, 1, 2, 3,
and 4, respectively;. Functions which send single character output to Ports 1
and 3 are named OUTCH and CHRPRINT, respectively.

In all of the string output routines, register A5 is used to point to the
beginning of the string, and register A6 points to the byte immediately
following the last byte in the string. The string that is outputted consists of
all the bytes between the address contained in A5 and the one in A6, including
the byte pointed to by A5 but not including the byte to which A6 points. In
each case, with one exception, A5 is pointing to the last byte in the output
string plus one when the output function is complete. The exception, PRCRLF,
leaves register A5 unchanged.

Strings are generally collections of ASCII encoded characters. In the case of
Port 4 (tape interface), the string are also generally in S-record format.
OUTPUT, OUTICR, and OUTPUT21 will echo the character being sent to their
respective ports to Port 3 (printer) if it is attached (using the PA command).
Any character sent to Port 3, by these functions or by PRCRLF, must be a
printable ASCII character or a carriage return or 1line feed; all other
characters are replaced by the ASCII code for a period ($2E) before they are
sent to the printer. Printable characters include all ASCII codes between and
including $20 through $7F.

The major difference between OUTPUT and OUT1CR is that OUTLCR appends a carriage
return and line feed to the end of the string. None of the other output string
functions append the CRLF to the end of the string. OUTLCR also destroys the
contents of registers DO and D1 and moves the base address of the Port 1 serial
device into register A0, Additionally, the contents of register DO are
destroyed by PRCRLF. Refer to Table 5-3 for a summary of parameters required
and registers used by these functions.

Two single character output functions can be called; OUTCH sends a character to
Port 1 echoing it to Port 3 if it is attached, and CHRPRINT sends a character
directly to Port 3. The character is generally ASCII coded and must be put in
the lowest byte of register DO before the output function is called. As with
the string functions, any character sent to Port 3 must be a printable character
or a carriage return or line feed.

OUTCH does not restore the contents of either DO or Dl. It initializes A0 to
the base address of the Port 1 serial I/0 device.

5-7

ey

— — —_— -— atburs £ 474 INTUQYHD
ssaippe aseq T# YIOV-OV cIey)
pakoaisep 1a ‘0a _— -— —_— atbuts 1 2174 HOLNO
-— T+ pug *3jng 31e3s *3ng T + pug °3Ing Butaag v 6£C LNOAAYL
pakoaasap 0a 3Je3g *Ing 3ae3S *Ing T + pud *3ng furas £ LET JTOud
-— T + pug °3ng 3ae3g “jng 1 + pug °3ng Buraag Z e 12104100
ssaippe aseq 14 YIOV-OV
pakoc1isep 1a ‘oa T+ puwd °Ing 31e38 *Ing T+ pud *3ng butriag 1 L2z HOTLNO
—_— T+ pud °3Jng 31e3s *3ng T+ pud *3ng Butizs T 274 1nd1no
SUALSION HAHIO TYNIJ TYILINI ANMTYA TVILINI 4dAL HAGWNN HAGWNN AWYN
SY HALSION 9V HALSIOM INdLNo J1x0d NOTIONNA NOTIONNA
suorjoung IndIng *€-G TGVl
pakoaysap 1d
ssaappe aseq T4 VIOV = OV “1eW
*1eyo andut = 0Q e o — -— a1burs 1 Lz JHONI
— 3Ie3s 193Ing pud *jng °DU7 8914 XN v0$ = J1 putaag 14 8ee NIZdVL
—_— 1138 1933ng pug "yng *o0] 9813 IXAN aos = W buriag Z ove 0ZNILY0d
_— 31038 I1933NQ T+ pug *jng °*D07 381 IXaN aos = ¥ butaag 1 44 NTNIIMOd
-— 3xe3s 1933ng T+ Pud *3ng °*DOT 8913 IXeN aos = W buriag 1 1874 TNILIYOd
ANTYA TUNIJ AMIVA TYILINI TYNIJ TYILINI HALOVIVHD AdAL HIGWON JAGWNN AWYN
SHALSIOHY HIHIO G¥ HIISTONY 9V HALSIONY NOTIYNIWMAL I0dLNo JHod NOTJIONNI NOTLONNA
suotrjoung Indul *z-G A9Vl

5-8

5.3.2 Conversion Functions
The conversion functions can be divided into two groups:

. Hex conversion routines which convert hexadecimal numbers to ASCII encoded
decimal or ASCII encoded hex.

. ASCII conversion routines which convert ASCII encoded numbers to either
decimal or hexadecimal.

Both groups are needed to interface with the various peripherals connected to
the I/0 ports. Most require all characters to be ASCII encoded.

There are five different routines to convert hex numbers to ASCII encoded hex
digits, which are then transferred to a buffer. One, two, four, six, or eight
hex digits can be converted to ASCII, depending on which of the five hex to
ASCII conversion functions — PUTHEX, PNT2HX, PNT4HX, PNT6HX, PNT8HX -— is used.
Register A6 must point to the buffer where the character(s) will be stored. A6
is incremented by 1, 2, 4, 6, or 8, depending on the number of digits converted.

The hex number to be converted is passed to the conversion routine in register
DO (right-justified using four bits per digit); anywhere from four to 32 bits of
DO may be required, depending on the number of digits to be converted.

8 digits
)
6 digits L4
4 digits '
2 digits v
1
l 1 digit ¥
] v !
D3l|l||||D23||||||D15||||||D7||||||D0
Register DO

Each digit requires four bits; up to eight digits can be represented. The most
significant digit is converted and placed in the buffer first, followed by the
other digits in descending order. All five routines destroy the contents of
register DO. The contents of registers D1 and D2 may or may not be destroyed,
depending on the function (see Table 5-4 for more details).

HEX2DEC converts the 8-digit hex number found in register DO to the equivalent
decimal number. This decimal number is converted to ASCII-encoded digits and
placed in the buffer. All leading zeros are suppressed when the number is
transferred to the buffer. The final value of register A6 (the buffer pointer)
is therefore unpredictable; its value depends on the number of non-zero digits
in the number. Specific information on this function is shown in Table 5-4..

The six conversion functions discussed thus far convert hex numbers to ASCII.
The last three conversion functions are used to convert ASCII characters to hex
or decimal digits. GETNUMA and GETNUMD take ASCII encoded numbers from a buffer
pointed to by register A5 and convert them to hex and decimal digits,
respectively. If the number of digits is too large to be represented in 32 bits
or if an inappropriate digit is received (i.e., a digit which is too large for
the base or is not a digit at all), the conversion will be aborted and an error
message displayed at the terminal. Otherwise, the conversion will continue
until all digits in the buffer have been processed. Register A6 should point
one byte past the last digit to indicate the end of the buffer. The resultant
value is returned in register DO; all 32 bits are used. A5 is left pointing one
byte past the last digit.

5-9

TABLE 5-4. Hex Conversion Routines

NUMBER OF PORTION OF DO REGISTERS USED
FUNCTION FUNCTION HEX DIGITS USED FOR FINAL VALUE AND NOT
NAME NUMBER CONVERTED DIGIT(S) OF A6 RESTORED
PUTHEX 234 one bits 3-0 A6 init + 1 DO
PNT2HX 233 two bits 7-0 A6 init + 2 DO ,D2
PNT4HX 232 four bits 15-0 A6 init + 4 D0,D1,D2
PNT6HX 231 six bits 23-0 A6 init + 6 Do,D1,D2
PNT8HX 230 eight bits 31-0 A6 init + 8 Dpo,D1,D2
HEX2DEC 236 eight bits 31-0 * DO

* unpredictable -- depends on original hex value

The final conversion function, GETHEX, converts the ASCII character in the
lowest byte of register DO to hex and returns the hex number in the same byte.
If the ASCII code does not represent a valid hex digit, an error message is
generated. The ASCII conversion routines are summarized in Table 5-5; all
registers not included in the table are unchanged.

5.3.3 Buffer Control Functions

The buffer control functions are useful in conjunction with the various input
and output functions which are available. The control functions are used
primarily to initialize buffer pointers and to move ASCII strings into an output
buffer,

FIXBUF initializes registers A5 and A6 to point to 'BUFFER'. This is a buffer
within the system RAM and is used by TUTOR. No other registers are altered and
no parameters are required. FIXBUF can be used to initialize A5 and A6 prior to
calling the string input functions. Usage of this buffer while tracing or with
breakpoints will produce erroneous results.

FIXDADD, FIXDATA, and FIXDCRLF are all used to transfer an ASCII string to a
buffer and are summarized in Table 5-6; all registers not included in the table
are unchanged. The first two, FIXDADD and FIXDATA, move a string pointed to by
register A5 into the buffer. FIXDADD requires that register A6 point to the
buffer, while FIXDATA always moves the string to the location in system RAM
called 'BUFFER'. The ASCII end of transmission character (EOT = $04) is used to
indicate the end of the string. It must be the last character in the string,
but is not moved to the buffer. Registers A5 and A6 are left pointing to
'BUFFER' and the buffer end + 1, respectively.

FIXDCRLF is quite similar to FIXDATA -- a string pointed to by register A5 is
moved to 'BUFFER'. The difference is that FIXDCRLF transfers the ASCII code for
a carriage return and line feed to the beginning of the buffer before
transferring the string. The termination character ($04) and parameters
returned are the same.

5-10

T + pus 1833ng - W

e3ep butaow
810Jsq ,Mi3ddnd, 03 9V So9ZITeIjTul
!puriys jo pus sSa1JTUBIS YOS

Jdaddng, - v 3ie3s burils - GV {,4344ng, 03 butils ‘31 ‘¥D AW 6vC JTIOAXId
J3dang, - 9v
3dandg, - ov SUON WH34dng, 03 9V pue GV SIZITeTI3Tul 162 JdNEX1d
T + pus 213JIng - oY ejep mc..n>OE 2103J3q MiddNd, ©3 N
JMadang, - SV 31e3s PUTIAS - GV S9ZTTPTITUT INq AQVAXIJd se swes 0S¢ VINAXI1d
1833nq uI
T + pus 193Ing - 9¥ UuoTI3edoT I%XaN - W putias jo pus s91ITUBIS ¥0$
N33and, - oY 3ie3s burils - ¥ {19330q 03 burils e puaddy A°YA aavaxid
QINUNLTY amIN0T™ NOILJTHDSAA NOILONAJ HIAGWNN TWYN
SUA LAWYV SYA LAWYV _ NOIIONNI NOIIONNI
suorjoung Toi1zuod 193jnd °9-G FIAVL
319 ¥ S11q 8
antea xay Jeyd IIOSY — —_— — - Gaee XYHLIO
S31q ¢
anTeAa x9Y -— —_— T + pus 193Ing T + pus 193Jnq 2Ie3s 197JInq T4 QWNNLID
s31q ¢
antea xay S — T + pud 18JInq T + pue I93Jnq 2ie3s 137Inq 9z¢ VWNNLIO
TUNId TYILINI TUNIJ TVILINI TYNIA TVILINI UAGWAN TWYN
0d ¥IALSIOM oV ¥ALSIOR GV WIISIOmY NOIIONNd NOIIONNA

S9UTINOY UOTISISAUCD JIDSY °*G6-G A9Vl

5-11

5.3.4 Transfer Control to TUTOR

Using TRAP 14, control can be transferred from a target program to TUTOR in two
ways. One path uses the TRAP 14 function START. After control is passed to
TUTOR, the restart initialization procedure is executed. The stack pointer,
register A7, is initialized to 'SYSSTACK'. The exception vectors, located in
the lower portion of the system RAM, are initialized. A portion of the upper
system RAM is zeroed. The status register is set to $2700 — interrupt mask
level 7 and supervisor state. The prompt is then sent to Port 1.

Using the TRAP 14 function TUTOR, the other path performs only a portion of the

initialization described above. The stack pointer and status register are
initialized and the prompt is displayed. See Table 5-7.

TABLE 5-7. Transfer Control to TUTOR

FUNCTION FUNCTION

NAME NUMBER DESCRIPTION REGISTERS AFFECTED
START 229 Restart TUTOR Status Register=$2700

Perform Initialization A7="SYSSTACK', Program Counter=0
TUTOR 228 Go to TUTOR Status Register=$2700

Print Prompt A7="SYSSTACK'

NOTE: Calling START or TUTOR from the user state will result in a privilege
violation because they write to the status register.

5-12

5.3.5 Inserting Additional Functions

User-defined functions can also be called using the TRAP 14 handler. The
TRAP 14 handler uses the function number and a lookup table to determine the
address of the selected function. User functions are included by inserting
additional lookup tables. The format for entries in these tables is $UUSSSSSS,
where UU is the function number in hex —— $0 through $7F for user-defined
functions — and SSSSSS is the starting address of the function in hex. Each
entry in the table requires one long word (32 bits).

The table is inserted quite simply; the TRAP 14 function LINKIT, function number
253, performs the insertion. Register A0 must point to the lookup table to be
inserted when the TRAP instruction is executed. The new table is, in effect,
placed in front of the old lookup table. However, since the new table is not
addressed immediately in front of the old table (i.e., old table is in ROM and
new table is in RAM), a link must be provided in the new table to connect it
with the old table. This is accomplished by making the starting address of the
0ld table preceded by S$FE the last entry in the new table. The format is
$FETTTTTT, where TITTIT is the pointer to the old table. This is easily
accomplished because LINKIT returns the required long word (SFETTTTTT) in
register A0. The target program should store this value at the end of the new
lookup table immediately after executing the TRAP 14 instruction. The following
is an example of the procedure used to link a user—defined table. Location
NEWTBL is the beginning of the user table and location ENDTBL is the end of the
user table. After executing the TRAP instruction, the pointer to the old table
must be saved at the end of the new table.

NOTE: Labels NEWIBL and ENDTBL are used here for clarity but will not, of
course, be accepted by the interactive assembler.

LEA NEWTBL ,A0 Register A0 points to new table
MOVE.B $#253,D7 LINKIT ;
TRAP #14
MOVE.L A0 ,ENDTBL A0 contains SFETTTTTT
. where TTTTTT points to old table

NEWTBL DC.W $uuUss
DC.W $SSSS
DC.W $uuss
DC.W $5SSS
ENDTBL DC.W SXXXX Link to old table will be stored here
DC.W $XXXX

LINKIT is summarized in Table 5-8. Additional tables can be inserted in the
same way.

5-13

Each user—defined function requires a user-written software routine located
somewhere within the user RAM. These routines should use an RTS (return from
subroutine) instruction, not an RTE (return from exception) instruction, to
return to the calling program. The TRAP 14 handler jumps to the user software
routine, leaving only the program counter on the stack. The RTE instruction
expects both the status register and the program counter to be on the stack.

NOTE: The user must make sure that the stack pointers are pointing to locations
within the user RAM and that the two stacks do not overlap before executing a
TRAP 14 instruction. :

TABLE 5-8. Inserting Additional Functions

FUNCTION FUNCTION REQUIRED REGISTERS
NAME NUMBER DESCRIPTION PARAMETERS AFFECTED
— 255 Reserved - End of Table Indicator — _—
SFFXXXXXX - must be last entry in last table
-_— 254 Reserved - Use to link one table to another — —
LINKIT 253 Insert User Table A0 - start add DO - destroyed
of table to AQ - start add
be inserted of old table

Because function numbers are compared with entries in the user table(s) first,
it is possible to redefine function numbers which have been defined by TUTOR
(i.e., 128 through 253; function numbers 254 and 255 cannot be redefined). For
example, if a user does not have a host system and has nothing else tied to Port
2, that user may not require the Port 2 I/O functions numbered 242 and 240. The
user can redefine the functions associated with these numbers by placing the
appropriate function number and the address of the new routine (SUUSSSSSS) in
the user function table. The user table will be searched first and the entry in
the other table will be ignored.

Function number 255 is described as a reserved function in Table 5-1. Although
this function is not called by target programs, it nevertheless performs a
useful function as an end-of-table indicator. All 255 available function
numbers may not be assigned to a function and, therefore, will not be included
in the lookup table(s). Thus, it is possible to attempt to call a nonexistent
function by using an unassigned function number. In such a situation, a match
will not be found in the table(s). Whatever follows the table(s) in memory —
program, data, random bytes -- will automatically be used to extend the table in
an attempt to find a match. A bus or address trap error is the usual end point
of this sequence, although significant damage may occur prior to the trap error.

To avoid these problems, the end-of-table function number should always be the
last entry in the last lookup table. Usually this is the table provided by
TUTOR. An address is not required for the end-of-table entry; only the function
number is needed. The format is $FFXXXXXX, where the X's represent 'don't care'
characters. This entry is included as the last long word of the TRAP 14 lookup
table provided by TUTOR. When the end-of-table entry is reached, the message
'UNDEFINED TRAP 14' is sent to Port 1 and control is transferred to TUTOR.

5-14

CHAPTER 6

SYSTEM INPUT/OUTPUT

For system I/O, the MC68000 Educational Computer Board provides two serial
communications ports, a printer compatible parallel port, an audio tape

interface, and programmable timer,

each of these areas.

6.1

6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3

6.3.1
6.3.2
6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.5

6.6

6.6.1

6.6.2

INTRODUCTION - INPUT/OUTPUT LSI DEVICES .cscccscccscoscccccccace
MC6850 Asynchronous Communications Interface Adaptercc...
MC68230 Parallel Interface and TimMer ..escececcsccccscccccascns
1/0 Device AJAress MAP sceceeeccccscssocscccascscscsoscscsscncs

SERIAL COMMUNICATIONS — PORT 1 AND PORT 2 cscscccsosccccsccccsss
ACIA Control RegisSter .ececesccecscscsccsscccossceasescscsscasne
Baud RALES seeseccevesccscccccosscosssssssscsossssncsscscsscnces
TUTOR Firmware I/O DrivVerS .ecececccscccssscsssscsoscccsscnscsce
Port 1 Terminal INterface .eececocccscssscsscsccesccoscccsccss
Port 2 HOoSt INterface .ieecesccescscccoccscscescscccccsccnscees
Transparent MOAe ceeeceececccscsssscossssssssccssccscsscsccosssse

PARALLEL I/0 PORT 3 — PRINTER INTERFACE ccccescosccccccscccscccs
Signal Line Configuration ..eesececccccccecsccocossscosccescns
Programming the PI/T .eeecececcssccosssccscsssccsscsscessccoccns

AUDIO TAPE INTERFACE = PORT 4 .cececvccsccscccssocccosncscsscnnas
Data Transfer Baud RAte ...eseeesccesscsccsccscssccccccssnsacs
Circuit Operation seeeececceserscsscossccccsssccsssscsrssccccns
Selecting Noninverted DAt@ .eeeeescecssscccccscacsssssscssccsns
Prégramming £he PI/T cecocccossccoscsssccssssssasscsossssssacssse

PI/T TIMER ceveececoccscsosscsoscocssocscssscssssesscosscoscsssccss

SYSTEM INTERRUPTS .ecceccscccssssccsccocscsccscccccsccscsesccsscscs
MC68000 Interrupt SELIUCEUrE .ccececsosoresesscscssscscccssccss

Interrupt SOftwafe Routines 00 0 0000000000000 00000008R00C0OLIILMIDS

Chapter 6 provides a detailed discussion of

Page
6~3

6-3

6-5

6-7

6-10
6-10
6-12
6-13
6-13
6-14
6-14
6-15
6-15
6-17
6-19
6-19
6-19
6-21
6-22
6-22
6-23
6~24
6-26

MC68000L4

ADDRESS
DECODE

ADDRESS
CONTROL

DATA

RS232C

PORT 1

TERMINAL

| J

A

ENABLE

A

N
©

MC6850
ACIA 1

(110-9600 BAUD)

BAUD RATE
GENERATOR

A

MC6850
ACIA 2

(110-9600 BAUD)

|

Y

RS232C

PORT 2
HOST

FIGURE 6=1.

MC68230
PUT

A
Y

A
|

PRINTER
BUFFERS

CASSETTE
INTERFACE

!

PORT 3

I

PORT 4

System I/0 Block Diagram

CHAPTER 6

SYSTEM INPUT/OUTPUT

6.1 INTRODUCTION - INPUT/OUTPUT LSI DEVICES

Figure 6-1 shows the block diagram of the I/0 structure for the MC68000
Educational Computer Board. Only two types of MOS LSI drives are used to
interface various peripherals to the MC68000. The first device is the MC6850
Asynchronous Communications Interface Adapter (ACIA) which is a member of the
M6800 family of peripheral parts. Two MC6850's are used to provide the serial
communications channels of Port 1 and Port 2.

The second device type is the MC68230 Parallel Interface and Timer (PI/T) which
is an M68000 family part. The Port 3 printer (parallel I/0) interface, the Port
4 cassette tape interface, and a programmable timer- are all provided by this
device.

6.1.1 MC6850 Asynchronous Communications Interface Adapter

The MC6850 Asynchronous Communications Interface Adapter (ACIA) provides the
data formatting and control to interface serial asynchronous data to an M6800
synchronous parallel bus. Parallel data received from the system bus is
transmitted asynchronously along with start and stop bits and parity
information. Going the other way, the received serial bit stream is stripped of
the start, stop, and parity bits before it is transferred to the parallel bus.
Figure 6-2 shows the MC6850 block diagram. Active low signals are specified by
an * following the signal name.

Information transfer and control is accomplished via four 8-bit registers within
the ACIA. Two of the registers are read only registers and two are write only
registers. Only one register select input is required to address all four
registers; the read/write (R/NW) input provides the other select control line.
These registers allow programming of variable word lengths, clock division
ratios, transmit control, receive control, and interrupt control.

Two bytes within the address map are needed for each of the two ACIA's present
on the board. One register can be loaded and another read at each byte address.
Each device has an 8-bit data interface, and the system is configured with one
ACIA tied to the lower eight bits of the MC68000 data bus (DO through D7) and
the second ACIA tied to the upper eight bits (D8 through D15) of the bus. 1In
this manner, both odd and even address locations are utilized within the address
space.

As was noted, the MC6850 is a synchronous bus interface which requires that a
read or write to any of its registers must by synchronized to its E clock. The
E clock for the educational board is supplied by the MC68000L4 and is one-tenth
(1/10) the clock frequency of the MC68000L4; that is, E is a 400 KHz clock. To
interface with a synchronous device, the MC68000 can modify its normally
asynchronous bus cycle to meet a synchronous cycle requirement.

T i]
ransmit Clock 4 Clock Parity
Enable 14 ﬁ Gen Gen
Read/Write 13 ——p» Chip *
Chip Select 0 8 —m Select Transmit Transmit
Chip Select 1 10 —#» and Data :> Shift 4 6 Transmit Data
Chip Select 2 9 —Q)| Read/Write Register Register
Register Select 11— CoOnNtrol
Transmit
\ Control
O——T———— 24 Clear-to-Send
D0 22 -
Status
D1 21 -~ Register *
D2 20 - Interrupt
Logicp IO— 7 interrupt Request
D3 19 -wp Data ?
B
D4 18 <t Bufufsers 23 Data Carrier Detect
D5 17 -
D6 16 - ::> o & 5 Request-to-Send
D7 15 a9 Control CL
Register
Receive Parity
Control Check
VCC= Pin 12 Receive Receive
Vgg=Pin 1 Data K Shift 2 Receive Data
Register ‘Register
Clock Sync
= O
Receive Clock 3 Gen Logic

FIGURE 6-2,

MC6850 ACIA Block Diagram

6-4

Hardware external to the MC68000 asserts the Valid Peripheral Address (VPA¥)
line whenever the MC6850's address space is accessed. The MC68000 then
synchronizes itself to the E clock and asserts Valid Memory Address (VMA*).
VMA* goes to the ACIA chip select logic and enables the ACIA's. When E clock is
high, data is transferred. When E goes low again, the processor negates VMA*
and ends the cycle.

The MC6850's are the only devices that use the MC68000's on-board synchronous
interface. For more information on the MC6850, consult its data sheet.

6.1.2 MC68230 Parallel Interface and Timer

The MC68230 Parallel Interface and Timer (PI/T) provides two double buffered
parallel interface ports, eight general purpose I/0 pins, and a 24-bit
programmable timer. The ports and the timer compose two independent sections
within the PI/T. The port section consists of two 8-bit ports, Port A and Port
B, four handshake lines, Hl, H2, H3, and H4, and a third 8-bit port, Port C.
Port C, however, is a dual function port. Six of the eight pins which make up
Port C have a second function associated with the timer, interrupts, or direct
memory access (DMA) requests. The MC68230 block diagram is shown in Figure 6-3.

Ports A and B can be operated individually or combined as one 16-bit wide
parallel port. The parallel ports will operate in unidirectional or
bidirectional modes. In the unidirectional modes, data direction registers
within the PI/T determine whether the port pins are inputs or outputs. In the
bidirectional modes, the data direction registers are ignored and the direction
is determined dynamically by the state of the four handshake pins. These
programmable handshake pins provide an interface flexible enough for connection
to a wide variety of low, medium, or high speed peripherals.

The other independent section within the PI/T is the timer. The timer consists
of a 24-bit synchronous presettable down counter and a 5-bit prescaler. Use of
the prescaler is optional. The down counter is clocked either by the output of
the prescaler or by an external timer input pin (one of the Port C dual function
pins). The prescaler, in turn, is clocked by either the system clock (CLK pin)
or the external timer input pin. The external timer input is brought out on the
J2 edge connector. The PI/T must be programmed by the user to utilize the
external clock. The MC68230 timer can generate periodic interrupts, a square
wave, or a single interrupt after a programmed time period. It can also be used
for elapsed time measurement.

The MC68230 has 23 registers that can be addressed from the system bus. The
data bus interface is eight bits wide and is tied to the lower eight bits (DO
through D7) of the system bus. Because of this, byte operations are valid only
on odd addresses and accesses to upper bytes; even addresses are invalid and
result in a bus trap error. The MC68230 occupies a 64-byte address space (32
words) although only 23 odd addresses are used. Note that the DTACK* will be
returned anytime the other nine odd locations are accessed. These locations
read as zeros, and writes to them are ignored.

The MC68230 PI/T is a complex device. This description is very short and the
reader is encouraged to become more knowledgeable by referring to the MC68230

Data Sheet.

6-5

4 4
R/W DO D1

bt

47
D3

48

46
?2 D4

1
D5

2 3
D6 D7

P

Data Bus Interface and
interrupt Vector Registers

Port
Interrupt/
DMA
Control
Logic

Internal
Data Bus

Timer

Port

PAO
fp—— P A1
fst——- P A2
fag——t PA3
[P A4
ft——— PAG
fettt———~ P AG
[et——— P A7

Handshake
Controllers

- V(i

and
Mode Logic

Handshake
Interface
Logic

H1

[<—H3
Jete— H4

Port C and Pin Function Multiplexer

3

PC7/
37

'

PC6/
PTACK
36

o

PCb/
PIRQ DMAREQ
35 34

FIGURE 6~3.

PC4/ PC3/TOUT PC2/TIN PC1

L

o

33 32 3

6-6

|

RS1
29

Port

e
PB1
etg—a-PB2
[et——- PB3
jeatp—— PB4
et PR G
festtf———0= P B 6
g P B 7

}

RS2
28

MC68230 PI/T Block Diagram

RS3

b4

RS4

27 26 25

- = OO, N

- O

RS5

6.1.3 I/0 Device Address Map

Page $010000-$01FFFF within the educational computer address map is reserved for
the input/output devices. The registers contained within the PI/T and the
ACIA's are all accessed within this page. The device addresses are not fully
decoded within the page; therefore, each device can be accessed at several
different areas. Refer to paragraph 7.2.2 and Table 7-1 for the address map of
the entire system,

Table 6-1 shows the address map for the MC68230 PI/T, which contains 23 register
locations. Within pade $010000, the PI/T can be accessed any time address line
A6 = 0. The MC68230 is enabled by a signal that is decoded from the upper eight
address bits, A6 and LDS*. 1In turn, the MC68230 registers are selected via
address lines Al through A5. The PI/T responds to the following bit pattern:

0000 0001 XXXX XXXX XOAA AAAUDS*
54 321

The device is connected to the lower eight data lines and can be accessed only
at odd byte addresses.

Table 6-2 shows the address map for the MC6850 ACIA's which each contain four
registers (two are read only and two are write only). Within page $010000, the
ACIA's can be accessed any time address line A6 = 1. The ACIA's are enabled by
a signal that is decoded from the upper eight address bits. After being
enabled, the ACIA's then use address lines A6 and Al as well as the data strobes
(LDS* and UDS*) to select registers. The ACIA's respond to the following bit
pattern:

LDS*
0000 0001 XXXX XXXX X1XX XXAUDS*
1

One ACIA is accessed on the lower eight bits of the data bus, and the other is

accessed on the upper eight bits of the data bus. The data strobes determine
which device is selected.

-7

TABLE 6-1. MC68230 PI/T Address Map

ADDRESS($) PI/T REGISTER
010001 Port General Control Register (PGCR)
010003 Port Service Request Register (PSRR)
010005 Port A Data Direction Register (PADDR)
010007 Port B Data Direction Register (PBDDR)
010009 Port C Data Direction Register (PCDDR)
01000B Port Interrupt Vector Register (PIVR)
01000D Port A Control Register (PACR)
01000F Port B Control Register (PBCR)
010011 Port A Data Register (PADR)
010013 Port B Data Register (PBDR)
010015 Port A Alternate Register (PAAR)
010017 Port B Alternate Register (PBAR)
010019 Port C Data Register (PCDR)
01001B Port Status Register (PSR)
010021 Timer Control Register (TCR)
010023 Timer Interrupt Vector Register (TIVR)
010027 Counter Preload Register High (CPRH)
010029 Counter Preload Register Middle (CPRM)
01002B Counter Preload Register Low (CPRL)
0lo002F Count Register High (CNTRH)
010031 Count Register Middle (CNTRM)
010033 Count Register Low (CNTRL)
010035 Timer Status Register (TSR)

NOTE:

The PI/T address decode is redundant within page $010000.
The PI/T can be accessed any time address line A6 = 0
within the page.

6-8

TABLE 6-2. MC6850 ACIA Address Map

ADDRESS ($) ACIA REGISTER
010040 ACIA 1 -
Control Register (Write Only)
Status Register (Read Only)
010041 ACIA 2 -
Control Register (Write Only)
Status Register (Read Only)
010042 ACIA 1 -
Transmit Data Register (Write Only)
Receive Data Register (Read Only)
010043 ACIA 2 -
Transmit Data Register (Write Only)
Receive Data Register (Read Only)
NOTE:

The ACIA address decode is redundant within page
The ACIA's can be accessed any time
address line A6 = 1 within the page.

$010000.

6-9

6.2 SERIAL COMMUNICATIONS — PORT 1 AND PORT 2

Two serial ports are provided on the MC68000 Educational Computer Board. Port 1
is normally connected to a terminal, and Port 2 provides a link to a host
computer. Figure 6-4 shows a functional schematic diagram of the serial port
logic. Two MC6850 ACIA's provide the interface between the computer's parallel
data bus structure and the serial communications lines, Data taken from the
system bus is serially transmitted and serial data received is read to the bus.
The MC6850's also provide data formatting and error checking.

The serial interface is a subset of the E.I.A. RS-232C standard. Buffers
provide the proper drive and levels to interface the MOS and TTL devices to
RS-232C. Appendix C discusses RS-232C in more detail.

The functional mode of each ACIA is programmed via its control register (one of
four on-board registers). The programmable control register sets variable word
lengths, clock division ratios, transmit control, receive control, and interrupt
control. The control registers are programmed at system initialization for the
selected operational modes.

6.2.1 ACIA Control Register

The ACIA control register is eight bits wide and determines the operational mode
of the device. Table 6-3 lists the control bits and their corresponding states.
In the normal operational mode of the educational computer, the control register
is programmed with $15 which corresponds to:

. receive and transmit interrupts disabled
. 8-bit words with one stop bit, no parity
. divide-by-16 clock ratio

Some comments can be made concerning this operational mode:

a. The educational computer hardware supports ACIA interrupts (see
paragraph 6.6) but the TUTOR firmware does not contain service routines
for these interrupts. If the user desires to use these interrupts, he
must provide the service routines.

b. The ACIA can be programmed to transmit parity bits. However, the TUTOR
firmware does not check received data for parity errors. The parity
error bit in the status registers is ignored.

c. Request to Send (RTS) is a control line on the ACIA which allows the MPU
to control a peripheral or modem by writing to the control register.
RTS must be low when the educational computer is operating in its normal
mode. Bringing RTS high on the Port 1 ACIA causes the board to operate
in the Transparent Mode (see paragraph 6.2.6).

d. The divide-by-16 clock ratio is selected because of considerations
discussed in paragraph 6.2.2.

To change the control register characters, the Port Format (PF) command
(paragraph 3.5.21) can be used. The PFl command is used to alter Port 1 (ACIAl)
and the PF2 command is used to alter Port 2 (ACIA2). The user must be aware of
the requirements and restrictions when altering these registers.

6-10

ACIA 1 PART OF

Mcesso 43
(TX DATA
3
D08-D15 TXD) RX DATA
DATsA RXD . 5
BUs * 7~ RTS |
c1s
BCo —> :
TXC
CONTROL DTR
&8 — » RXC { 14
ADDRESS J8
PORT 1
TO
CTS g | TERMINAL
MC14411 :}
— DSR
9600 1
4800 —}
° 4
2400
J10
BAUD 1200
RATE 600])3
GENERATOR 300 ' bco | ..
150
—00 4
0
PART OF
Ja
RTs [|
7
ACIA 2 g_
MC6850 .
) TX DATA |
D00-DO7 TXD
DATAH—» RXD
BUS RTS
c1s (RX DATA PORT 2
bcb —> 5 TO
HOST
TXC (MODEM)
CONTROL
& —m» RXC
ADDRESS J7 DTR
14
cTS
9

41,_

FIGURE 6-4. Serial Communications Ports Functional Schematic Diagram

6=-11

TABLE 6-3. ACIA Control Register Bits

BIT 7
RECEIVE BIT 6 & BIT 5 BIT 4, BIT 3, & BIT 2 BIT 1 & BIT 0
INTERRUPT TRANSMIT CONTROL WORD SELECT COUNTER DIVIDE
ENABLE SELECT
0-Disabled 00-RTS=low 000 - 7 bits, even parity, 00 - *1
1-Enabled Transmit Interrupt 2 stop bits 01l - =16
_Disabled 001 - 7 bits, odd parity, 10 - :64
01-RTS=low 2 stop bits 11 - Master
Transmit Interrupt 010 - 7 bits, even parity, Reset
_Enabled 1 stop bit
10-RTS=high 011 - 7 bits, odd parity,
Transmit Interrupt 1 stop bit
_Disabled 100 - 8 bits, no parity,
11-RTS=1low 2 stop bits
Transmit Interrupt 101 - 8 bits, no parity,
Disabled 1 stop bit
Transmits a Break 110 - 8 bits, even parity,
Level on Transmit 1 stop bit
Data Output 111 - 8 bits, odd parity,
1 stop bit

6.2.2 Baud Rates

The serial baud rates are jumper selectable as discussed in paragraphs 2.2.4 and
2.5.2.1. However, the clock divide ratio as selected by the control register of
the ACIA affects the serial baud rate. The MCl4411 Baud Rate Generator
generates clocks which are actually 16 times higher in frequency than the
desired serial baud rates. Under normal operation with the ACIA programmed for
divide-by-16 clock ratio, the serial baud rates specified for the board result.
Other non-standard clock rates could be generated.

Using a clock which is 16 times the serial bit rate allows the ACIA to
synchronize the clock with the incoming serial data stream. If the ACIA clock
frequency were equal to the serial bit rate, the ACIA could not synchronize the
clock and the data.

6-12

6.2.3 TUTOR Firmware I/O Drivers

As previously stated, the ACIA's are programmed at system initialization. The
I/0 firmware drivers can then be used to control communication using the serial
ports. The drivers for the terminal and host ports are very similar.
Characters to be transmitted are converted to ASCII-coded bytes and are placed
in a RAM buffer. Pointers to the beginning and end of the buffer are saved.
The buffer is transmitted one byte at a time by writing each byte into the
appropriate ACIA Transmit Data Register. The ACIA inserts the previously
selected start, stop, and parity bits and performs the parallel to serial
conversion. ‘

The Transmit Data Register is double-buffered; that is, it can accept a second
byte to be transmitted while it is actually transmitting a first byte. Bit 1 of
the ACIA Status Register (TDRE) is polled by the processor to determine when the
data has been transferred from the Transmit Data Register so that new data may
be entered while the old data is being transmitted serially. An interrupt can
also be generated if the transmitting interrupt is enabled.

The maximum rate at which the processor can enter data is a function of the
serial baud rate and the number of bits transmitted for each byte (including
start, stop, and parity bits):

Update rate (bytes/secord) = baud rate (bits/second)
nunber of bits/byte (bits/byte)

As an example, for 9600 baud and eight data bits with one stop bit and one start
bit, the maximum update rate is 960 bytes/second or approximately one byte every
millisecond.

The input driver routines monitor bit 0 (RDRF) of the ACIA Status Register to
determine when a new byte of data has been received. As above, this bit is
polled by the processor; however, an interrupt can be generated. The ACIA
removes the parity, start, and stop bits, sets the appropriated status bits, and
performs the serial-to-parallel conversion., The received data is typically
encoded ASCII, and a carriage return signifies the end of the input string. As
the incoming data is received, the processor stores it in a buffer. After the
carriage return is received, processing begins on the data stored in the buffer.

6.2.4 Port 1 Terminal Interface

ACIAl (U13) is used as the terminal interface and is connected to the upper half
(D08-D15) of the system bus. = As previously described in Table 6-2, its
registers reside at even addresses $010040 and $010042 within the memory map.

The RS-232C interface of Port 1 (J3) appears as a modem to the terminal
connector. Referring again to Figure 6-4, six signal lines are supported through
RS-232C buffers. The ACIA interfaces to three of these including transmit data
(TX DATA), receive data (RX DATA), and data terminal ready (DIR). Some
terminals require other lines to be present including clear to send (CTS), data
set ready (DSR), and data carrier detect (DCD). These signals are driven back
to the terminal; however, they are merely a connection to DTR which shows that
the terminal is attached and ready.

6-13

As part of the power-up and reset firmware routines, the ACIA is reset by
setting control register bits 0 and 1. This ensures that the device is master
reset before selecting the operating configuration. This bus-programmed master
reset also releases the internal reset that occurs at power-on. The programmed
reset must be applied prior to operating the ACIA.

To initialize the ACIA, a $15 is written to the control register. Information
can now be sent or received. As previously described, the driver routines
interface with the device to transmit and receive data.

One special feature of Port 1 is that the processor also monitors the framing
error status bit (FE) of ACIAl. Detection of this error form shows activation
of the BREAK key, which causes the processor to abort the present activity and
return to TUTOR.

6.2.5 Port 2 Host Interface

ACIA2 (Ul2) forms the host interface and is connected to the lower half
(DO0-D07) of the system bus. Its registers reside at odd addresses $010041 and
$010043 within the memory map. .

The RS-232C interface of Port 2 (J4) appears as a "terminal" to the host or
modem connector. Five signal lines are supported including TX DATA, RX DATA,
RTS, DIR, and CTS.

ACIA2 is reset and initialized similar to ACIAl. Operation for transmitting and
receiving data occurs in a similar manner.

While transmitting or receiving data via Port 2, TUTOR also monitors Port 1 for
the BREAK key. ‘This allows the user to abort a function which uses Port 2
communications.

6.2.6 Transparent Mode

As described in paragraph 3.5.23, the Transparent Mode (TM) command within TUTOR
connects serial Ports 1 and 2 together. In this manner, the user terminal
appears connected directly to the host computer, bypassing the MEX68KECB.

To enter this mode, the Request To Send (RTS) pin of the ACIAl is brought high
by writing a 10 into bits 6 and 5 of the control register. The RTS line gates
the transmit and receive data paths so that the serial ports are tied together;
that is, the incoming data line of Port 1 is gated through to the outgoing line
of Port 2, and the incoming data line of Port 2 is gated through to the outgoing
data line of Port 1. ACIAl continues to receive incoming data from Port 1.

In the transparent mode, the educational board is not directly involved in data
transmission between the terminal and the host. The ECB monitors the data
transmission from the terminal and restores nommal operation upon detecting a
predetermined exit character. The character is selected with the ™ command.

6-14

6.3 PARALLEL I/0 PORT3 - PRINTER INTERFACE

pPort 3 of the MC68000 Educational Computer is a parallel I/O interface and is
configured to support a Centronics type printer. The MC68230 PI/T is used to
provide the register and bus interface required for this I/0. The MC68230
supports a wide range of operating modes through programming of its 23 internal
registers, however, this discussion focuses on this particular application.
Refer to the MC68230 Data Sheet for a description of other modes.

6.3.1 Signal Line Configuration

Figure 6-5 shows the MC68230 and the buffer devices used on Port 3. The
parallel interface consists of 8 data lines buffered as outputs (PAO0 through
PA7) which are associated with handshake lines H1 and H2, and eight unbuffered
data lines (PBO through PB7) which can be used as bidirectional lines and are
associated with handshake lines H3 and H4.

The signal line designations used for connector J1 are those corresponding to
the Centronics interface. The 8 buffered output data lines are PDO through PD7.
Handshake line H2 is also buffered as an output strobe and is called DATA
STROBE*., Handshake line Hl1 is an unbuffered input strobe and is designated

ACKNOWLEDGE* .

Only three of the unbuffered data lines (PBO through PB2) are used in the
printer interface. Signals from the printer indicate:

a. SELECT - when the printer is selected.
b. PAPER OUT - when the printer is out of paper.
c. BUSY - when the printer is busy.

Any of these conditions is valid when the signal is high. The printer is unable
to receive information when PAPER OUT or BUSY is activated and when SELECT is

not activated.

The additional handshake lines H3 and H4 are also used. H3 is the FAULT* input
from the printer which indicates a printer fault condition such as out of paper
or deselect. This input is not monitored by the TUTOR firmware because the
individual conditions are used as shown above. Finally, output handshake line
H4 is buffered and drives signal INPUT PRIME*. When INPUT PRIME* is driven low,
the input buffer within the printer is cleared and the printer logic is
initialized.

6-15

PART OF

i
> PDO %
\ PD1
Pe 37
PD2
::>> 35
. PD3
P 33
PD4
> 3t
™ PDS
29
PUT v
MC68230 RN PD6 27
PAO v
PA1 \ PD7
PA2 P 25
PA3 N)
PAS DATA STROBE* | .
PAS /
pATA D00-DO7 PAG "\ _NPUT PRIME" | _
BUS © 7 ACKNOWLEDGE*
H1 a7
H2 FAULT*
H3 5
Ha SELECT
P PAPER OUT | 25
BUSY
PB2 19
PB3 17
PB4 15
PB5 13
CONTROL PB6 11
& —» PB7 9
ADDRESS -'V
FIGURE 6-5. Printer Interface Port 3 Functional Schematic Diagram

6=-16

PORT 3
TO
PRINTER

6.3.2 Programming the PI/T

As part of the power-up and reset routines the PI/T registers are initialized,
modes are selected, and the direction of data at the various ports is defined.
The necessary PI/T registers are shown in Table 6-4. The base address of the
MC68230 is $10001. The registers are addressed on the lower half of the MC68000
data bus; i.e., odd address locations. Bits in the Port General Control
Register (PGCR) are programmed to select the unidirectional 8~bit mode with all
handshake lines active low. The port mode control field of the PGCR should be
altered only when H12 enable and H34 enable fields are zero. For this reason,
these two fields are initially set to zero when the port mode control field is
first programmed. They are later set to one to enable the handshake lines.

The Port Service Request Register is cleared; direct memory access and
interrupts are not used. Port A bits are designated as all outputs and Port B
as inputs by programming the associated data direction register. A one in any
bit indicates an output; zeros indicate inputs. Submodes are determined by the
bits of the appropriate port control register. Bit 3 of each of the two port
control registers can be a one or a zero depending upon the required state of
the H2/H4 handshake lines. Initially, these bits are cleared. The data
registers are used to send characters to the printer and to check the status
lines. Handshake status bits are displayed in the port status register.

The last step of the initialization sequence is to reset and initialize the
printer by pulsing INPUT PRIME* (handshake line H4) low. This is done by
setting and then clearing bit 3 of the Port B control register. At this point,
the printer is initialized but not selected. It must be selected by the user
using the select button; a select code is not sent by the MEX68KECB to
automatically select the printer.

Characters can now be sent to the printer. All 7-bit ASCII encoded characters
from $20 through $7F, $0D (carriage return), and $OA (line feed) are acceptable.
Other codes below $20 are not printable and will be replaced by $2E (period).
All 8-bit codes will be masked to 7 bits.

When a printable character has been obtained, it is written to the Port A data
register and the printer is strobed to indicate valid data. The status bits
PBO-PB2 are then checked. If an error exists the message PRINTER NOT READY will
be sent to Port 1. The status lines are monitored until the error condition is
removed or the break key is entered at the terminal. After the error is
removed, the same byte is sent again. Before the next byte can be sent the PI/T
must receive an acknowledge from the printer indicating that it has accepted the
data. Bit 0 of the port status register indicates whether either of the Port A
output latches can accept new data (ACKNOWNLEDGE* received) or whether both
latches are full.

6-17

*uorjeiado uo burpuadsp senTea JuaiLIIIP

Y3 pourreaboid ST 3TQ 8yl ey So3eDIpur anTeA psuweiboid ag ur (ysers e yam oi19z) g v :3ION
I93s1bay STH SCH SEH SvH I9A9T T9A9T T[9A9T [9A9] ga100T$
snje3s 3iod TH ZH €H vH
aa3s1bay 0 1 Z € v S 9 L £T00TS
eleq g 3Jod 31d 31d 11d J1d 319 31d 31d 31d
a93s1bay 0 1 z € v S 9 L TT00TS
ejeq V 31od 31d 319 31d J1d I1d 31d 31d 31d
0004 0TOT 193s1b9y T30 9rqeud aIqeud spoung J000T$
1013uUcD g 310d je3s ouoAS JuI 103U $H g 31ad
€H €H vH
0008 OTTO I1a3s1bay 1130 aTqeud a1qeudy spouqns aooots
10J3UC) ¥ 3aad 3e3s Quons Jul Toa3ucD ZH ¥ 3aad
TH TH CH
0000 0000 193sTbay uUOT3O811Id 0 1 z 3 v S 9 L LO00TS
ejeq g 3acd 31d 31d 31d I1d 31d 31d 31d 319
TTIT TTITT J93s1bdY uor3zdeaId 0 T Z € v S 9 L S000T$
ejeq ¥ 3aod 31d 31d 31d 31d 31d 31d 31d 31d
0000 0000 J93s1bay 3senbay 1oa3uo0) Ajrioriad Sdd 30913S €000T$
901AI8S 3a0d 3dnaisjul 3aod 3dniasqul Odons *
0000 @000 I93s1bay T0a3U0D asuag asuUag asuag 9suss aIqeud I1qeud T0a3u0) T000TS
TeIsusd 3iad TH CH €H vH ZTH VEH dpoW 310d
anTeA aureN 0 1 4 3 v S 9 L SS8IppY
paune1boad 193s169y 31d J93sibey J93s1boy
30pJasqul i193Urid Ul pesn sae3sibey I/Id ‘-9 JI19}L

6-18

6.4 AUDIO TAPE INTERFACE - PORT 4

The audio tape interface is implemented using the 16-bit timer on the MC68230
and two I/0 lines. Information is sent to the tape as a serial bit stream. A
digital one is represented by one period of a 50% duty cycle 2000-Hz square
wave, whereas, a 1000-Hz 50% duty cycle square wave represents a logic zero.
The serial data rate is then somewhere between 1000 and 2000 baud, depending on
the bit stream being sent.

Saving and loading programs on tape is discussed in paragraphs 4.5.1 and 4.5.2.
In this discussion, the circuitry and operation of the tape interface are
discussed in detail.

6.4.1 Data Transfer Baud Rate

As with any data transfer using ASCII encoding, the effective baud rate measured
by the time required to transfer a block of data is lower than the data rate on
the transmission line. ASCII encoding generates a two-digit byte for every hex
digit of data (for example, a 4 becomes ASCII $34). This reduces the transfer
rate by one-half. 1In addition, S-records require overhead bytes such as type of
S-record, address of data, number of bytes in the record, and checksums to be
sent along with the data. This results in additional baud rate reduction of
approximately one-third. The effective baud rate of the tape interface is
between 300 and 500 baud, as opposed to the serial transmission rate of 1000 to

2000 baud.

6.4.2 Circuit Operation

The interface circuitry between the MC68230 and the tape player/recorder is
shown in Figure 6-6. Port C of the PI/T provides two I/O lines for the tape
interface.

Data is sent out via output PCl of the PI/T. This output drives a voltage
divider formed by Rl and R2 and is then AC-coupled to pin 3 of connector J2
designated DATA OUT. The voltage level from the PI/T 1is reduced by
approximately 10 to 1 to avoid overdriving the tape recorder input.

The auxiliary input of the tape recorder is generally used, however, the
microphone input will also work with most recorders. In either case, several
adjustments should be made prior to recording. If there is no automatic record
level control, use the volume control to adjust the record level (about
mid-range). If a tone control is present, it should be set to get the best high
frequency response. This corresponds to a "tinny" sound for audio recordings.
Also, a clean or erased tape provides best results.

Information comes back from the tape player via pin 1 of connector J2 designated
DATA IN. This signal passes through the interface circuit shown in Figure 6-6.
Comparator U4B is used to square up the slowly changing transitions coming from
the tape and produce rapid transitions., Diodes CRl and CR2 limit the input
voltage swing of the comparator. Approximately 450 millivolts of hysteresis is
used on the comparator.

6-19

PIUT

e

3

PORT 4
TO
CASSETTE
TAPE

MC68230
D00-D07
DATA
BUS © 7 ~
CONTROL R1 R2
& ——» PCO 4700 470
ADDRESS PC1 AN AAA— +5V PAF:TZOF
|¢ DATA OUT
R10 J5 AN
100K 1]2 3 c3
0, A
R9
2200
+5V
R5 R8 u4B
560 10K 5 MC3302 U4A
+5V —AAN —AAA— ™ 2 ¢ MC3302 R11
4 1 2200
CR1 > 7 L AAA— +5V
IN914 +
R6
CR2 R7 560
IN914 10K R4 014 |
10K T DATA IN
SA'AY
AN
R3
47K
FIGURE 6-6. Audio Tape Interface

6=20

The second comparator, U4A, is used to invert the output of U4B. This may or
may not be required, depending on the type of tape recorder used. Some tape
recorders play back a signal which is inverted from the original input signal;
others return a noninverted signal. Comparator U4B inverts the playback signal;
if the tape player does not produce a second inversion, one must be produced on
the educational computer board using U4A in order to provide the proper signal
to the tape driver/receiver firmware. The firmware expects a noninverted
signal. Jumper J5 can be used to select the second inversion, See the
following paragraph 6.4.3.

6.4.3 Selecting Noninverted Data

Figure 6-7 shows the location of header J5 which is used to provide noninverted
data to the tape receiver firmware (refer to Figure 6-6). If it is determined
that the tape player does not invert the data, the user must change the polarity
of the signal provided to the MC68230. Perform the following steps to invert
the data: :

a. Cut the signal trace between pin 1 and pin 2 of header J5 on the back
side of the printed circuit board. BE CAREFUL -- be sure to cut the
correct trace; it is approximately 1/8 inch long.

b. Place a plastic cap jumper on header J5 between Pin 2 and Pin 3.

If it is ever desired to restore the signal to the original configuration, the
plastic cap jumper can be placed between pin 1 and pin 2.

SRR R S

J5

FIGURE 6-7. Header J5 Location

6-21

6.4.4 Programming the PI/T

Port C of the PI/T and the on-board timer are used by the tape driver/receiver
firmware to send and receive tape data. Bit 1 of Port C (PCl) is specified as
an output to transmit data via the data direction register (all other Port C
bits are inputs). The 24-bit timer is used to generate and measure the time
intervals for the 2000 Hz and 1000 Hz square waves. The timer prescaler is used
and is clocked by the falling edge of the 4-MHz system clock.

To transmit data, the following sequence of events occurs. After obtaining the
bit that will be sent, the driver firmware loads a count representing one half
the required period (i.e., 500 microseconds for 1 kHz and 250 microseconds for
2 kHz) into the counter preload registers., Port C bit 1 is set high and the
timer is started. Bit 0 of the timer status register is monitored until the
specified time has elapsed, causing this bit to be set. At this point the timer
is stopped, PCl is cleared, and the timer is restarted. The counter is
automatically loaded with the contents of the preload registers. The status
register is again monitored to determine the end of the specified time period
and the completion of the output sequence. Another bit is obtained and the
output sequence is repeated.

To receive data, the tape input firmware measures the time between rising edges
of the input square wave to determine whether a logic one or zero is being sent.
It can now be seen why the polarity of the incoming signal is so important. If
the signal is inverted then the elapsed time measured is really the time between
the middle of one square wave (falling edge) and the middle of the next square
wave of the original wave form. The data would obviously become garbled and
lost.

The first step in the input sequence is to initialize the Port C data direction
register and then look for a low-to-high transition at PCO. This synchronizes
the firmware to the incoming signal and no data is lost because at least one
null character (eight zeros) is always recorded before any data.

when the high level is received at PCO, the timer is started using the same mode
as the output routine. However, the preload value is different. PCO is
monitored until a low level followed by a high level is received, at which point
the timer is stopped and the value in the count register is read and saved. The
timer is restarted. The period of the square wave is determined from the
difference between the original timer preload value and the count left in the
timer when it is halted. Additional bits are received in the same way.

6.5 PI/T TIMER

The MC68230 PI/T contains a 24-bit synchronous down counter that can generate
periodic interrupts, a square wave, or a single interrupt after a programmed
time period. Also, it can be used for elapsed time measurement.

The PI/T timer is loaded from three 8-bit Counter Preload Registers. The 24-bit
counter can be clocked from the output of a 5-bit (divide-by-32) prescaler, or
directly from a clock source. The clock source can be the 4 MHz system clock
(tied to the CLK input) or an external clock tied to the TIN pin. Several
different modes can be programmed by the user.

6-22

The counter signals occurrence of an event primarily through zero detection
(when the counter value is zero). The zero detect status (ZDS) bit is set in
the Timer Status Register (TSR). This is the only bit in the TSR. Also, an
interrupt can be generated with the zero detect.

The timer is fully configured and controlled by programming the 8-bit Timer
Control Register. It controls (1) the choice between the Port C operation and
the timer operation of three timer pins, (2) whether the counter is loaded from
the Counter Preload Register or rolls over when zero detect is reached, (3) the
clock input, (4) whether the prescaler is used, and (5) whether the timer is
enabled.

The contents of the counter can be read via the three count registers. The
counter must be stopped to get an accurate reading when accessing these

registers.

To summarize, the PI/T timer is fully controllable and available to the user.
For detailed information on using the timer, the MC68230 Data Sheet should be
referenced. On the Educational Computer Board, the following applies:

a. The timer can be clocked from the 4 MHz system clock or an external
clock.

b. The external clock can be connected to pin 5 of connector J2. The
maximum allowable clock frequency with an external signal is 4 MHz when
using the prescaler and 125 KHz when not using the prescaler.

c. The timer registers are all available from the bus (addresses $010021
through $010035). See Table 6-1.

d. The timer can generate a level 2 interrupt on the MC68000. See
paragraph 6.6 for details.

6.6 SYSTEM INTERRUPTS

The I/0 devices discussed in this chapter have the ability to generate
interrupts when they require attention. Also, the ABORT function is activated
via the interrupt structure. Interrupts can be generated on the Educational
Computer Board from the following sources:

a. The ABORT switch generates the equivalent of an unmaskable interrupt
when activated.

b, Serial Ports - For each MC6850 ACIA, an interrupt can be generated when
either the Transmit Data Register is empty requiring another byte of
data or the Receive Data Register is full containing a new byte of
information. 1In either case, the interrupt condition will not cause an
interrupt unless enabled in the ACIA status register. An enabled
interrupt condition pulls the IRQ pin of the ACIA low.

c. Parallel Port 3 — The parallel port of the MC68230 has an independent

interrupt capability. The dual function pin PIRQ provides an active low
parallel port interrupt request when enabled.

6-23

The PIRQ output is activated when any of the status bits associated with
handshake lines H1, H2, H3, and H4 goes to a 1. Bits 3, 4, 5, and 6 of
the PI/T Port Service Request Register (PSRR) enable and disable the
PIRQ and PIACK functions and define whether interrupt or DMA requests
are generated from activity on the Hl and H3 handshake lines. Each of
the four individual interrupt conditions can be selectively enabled in
the Port A and Port B control registers.

d. PI/T Timer -~ The MC68230 timer can also independently generate an
interrupt. TOUT provides an active low timer interrupt request when
enabled, The timer generates an interrupt when the 24-bit counter
decrements from $000001 to $000000. Bits 7, 6, and 5 of the timer
control register (TCR) are used to enable the timer interrupt function
and control timer operation.

e. M6800 IRQ - A special auto-vectored interrupt request level is provided
for the wirewrap area.

6.6.1 MC68000 Interrupt Structure

The MC68000 recognizes seven interrupt priority levels. The interrupt priority
levels are numbered from one to seven with level seven having the highest
priority (the equivalent of a non-maskable interrupt). The MC68000 status
register contains a three-bit mask which indicates the current processor
priority level. Interrupts are inhibited for priority levels less than or equal
to the current processor priority. An interrupt request is made to the
processor by encoding the interrupt request level on the interrupt request lines
with a zero indicating no interrupt requests.

The interrupt priority levels assigned on the MC68000 Educational Computer are
shown in Table 6-5. The ABORT button is assigned the level 7, non-maskable
interrupt. Level 4 is reserved for an M6800 type bus interface interrupt that
can be implemented in the wirewrap area of the board. Level 1 is not assigned.

All interrupts except those generated by the MC68230 are serviced through
autovectoring, Autovectoring is used when the interrupting device cannot
provide the processor with an exception vector from which the processor can
fetch the address of the interrupt service routine. During the processor
interrupt acknowledge cycle, VPA* must be asserted to indicate that an
internally generated vector is to be used. The processor then generates a
vector number which is determined by the interrupt level number. The seven
autovector numbers are vector numbers 25 through 31 (decimal). During an
interrupt acknowledge cycle for interrupt levels 7, 6, 5, and 4, VPA* is
asserted by the ECB hardware and the autovector is used. During an acknowledge
cycle for level 3 or 2 interrupts, the interrupting device (MC68230) must
provide an 8-bit vector number to the processor.

6-24

TABLE 6-5. Interrupt Priority Levels

AUTOVECTOR NUMBER

INTERI;(UP‘P LEVEL INTERRUPTING DEVICE (DECIMAL)
7 ABORT Button* 31
6 ACIA2 (Host)* 30
5 ACIAl (Terminal)* 29
4 M6800 IRQ* 28
3 PI/T Parallel Ports (PIRQ) Not Used
2 PI/T Timer (TOUT) Not Used
1 Not Used Not Used

*Autovectored Interrupts

The 8-bit interrupt vectors associated with PIRQ and TOUT are written into the
Port Interrupt Vector Register (PIVR) and the Timer Interrupt Vector Register
(TIVR), respectively. Only the upper six bits of the port interrupt vector
number are programmed by the user. Each of the four interrupt sources has its
own vector which together appear as a contiguous block of four vector numbers
whose common upper six bits are programmed in the PIVR. The lower two bits are
determined by the interrupt source:

Hl Source - 00
H2 Source - 01
H3 Source - 10
H4 Source -~ 11

If a vector number is not programmed in the appropriate interrupt vector
register before an interrupt occurs, the MC68230 will supply 15 (decimal) for
the vector number, where 15 is defined as the uninitialized interrupt vector in
the MC68000 exception vector table.

When acknowledging MC68000 compatible vectored interrupts, MC68230 input pins
PIACK and TIACK are used. When PIACK or TIACK is asserted and a port or timer
interrupt request is being asserted, the PI/T places the corresponding vector on
the data bus, The appropriate pin is asserted by the system logic during an
interrupt acknowledge cycle. PIACK and TIACK are dual function pins; the
appropriate function is selected in the Port Service Request Register or in the
Timer Control Register.

6-25

6.6.2 Interrupt Software Routines

The TUTOR firmware does not support any interrupts except level 7 which is the
ABORT function. Although the ECB hardware can generate interrupts for levels 2
through 6, it is the user's responsibility to provide the interrupt service
routines and to initialize the MC68000 exception vector table with the starting
addresses of the service routines.

The MC68000 translates an 8-bit vector number into an address as shown in Figure
6-8. The vector number is multiplied by four (shifted left two places) to
generate an address within the exception vector table. At this location in RAM,
the starting address (32 bits) of the interrupt handler routine is stored. All
8-bit vector numbers -- both autovectored and user supplied -- are treated in
the same way.

A23 Al0 A9 A8 A7 A6 A5 A4 A3 A2 Al AO

All Zeros vi v6 v5 v4d v3 v2 vl v0 0 0

FIGURE 6-8. Address Translated from 8-Bit Vector Number

To use the interrupts, the user must enable the interrupts through the
appropriate peripheral control registers, program the wvector numbers where
required on the MC68230, initialize the exception vector table, and, finally,
supply the interrupt handler routines. All of these tasks must be part of the
user program and its system initialization procedures. ‘

6-26

CHAPTER 7
HARDWARE DESCRIPTION

Chapter 7 pfovides a functional description of the MC68000 Educational Computer
Board and detailed information on using the wire-wrap facilities.

Page
7.1 INTRODUCTION ccececsaccsocavescesscssssasossossssnssosacsscasssae /=3
7.2 FUNCTIONAL DESCRIPTION .coccocecsovosccecsncocsccccsccssccssccos 7-3
7.2.1 MC68000LA4 MiCIrOPrOCESSOl seececessssscscssossscscsccnssoncsoes 1—3
7.2.2 AdAress DECOAE ceeseesssesscsscssssscscssscsscssssscscssccnsse /=3
7.2.3 32K BYte RAM civeecavccosososecssscsscccsssssancscsssscscascss 1=5
7.2.4 16K BYL@ ROM teeecsecoscnscavessasesssssasecsccsssacccsasossaes /=5
7.2.5 Serial Communications POItS seeceessessesscscccsccacsscssnscae /=5

7.2.6 MC68230 PI/T (Printer Interface, Cassette Tape Interface,
and Timer) EEEEEEEEXEEEEFEEE N A I A I B O B BN BN BN BN BN BN BE BN BN BE BEBE N BB BB N 7—6

7.2.7 Interrupt Control LOGiC seeeeeecscssscssssesscsscsscscssscsaae 10
7.2.8 System ClOCKS ceeseccssesassscssscssssosssssassscssssscscscsase 1=D
7.2.9 Bus Timeout LOGIC eeeececcccscscsssscsscacasssssssocscssscsscas /=0
7.2.10 System Initialization seeeeeecesecsscscoccescecsccscccccscanes 1=/
7.2.11 ABORT FUNCEION cveveseccasoscssvsssosssccssscsscssccssssccsnee 1=/
7.3 INTERFACE USING THE WIRE-WRAP AREA ..cceececcsccccccccccssccsccce 7-1
7.3.1 Wire-Wrap Device Mounting Area .eeseececccccccccccccoscccccnes 1=/
7.3.2 Auxiliary I/0 Header J16 .eeeecscosscsccssosccosccscscncascsee /—10
7.3.3 MC68000 Bus Signal ConneCtionS ceececsceccssscscsccscssscsccss /1—10
7.3.4 Extending System Address DECOGE s.cesssesecscccscacssscsscsces /=10
7.3.5 Asynchronous Bus INterface ..eeseeeccccsccecsscscsccsccccacsnes /~14
7.3.6 M6800 Type Synchronous 8-Bit Bus Interface ...cceeeeececcscess 7-15
7.3.6.1 M6800 Page Address DECOEe seeesescssssosssessscssssscsssssse 71—15

7.3'6.2 AutoVeCtored Interrupt Level 4 @0 06 0600000000000 0000008590600 000 7_16

pieog Jajandwo) Teuorjeonpd - weibeig yoord

*T-L dYNOId

ZHW | - s1n)
21901
¥9019
THW Y «—— p3 58
« «NOV5g ‘.08 ‘.48
ZHW 8 AL
{avn ‘sen ‘zvn ‘6en -
NIWVY oLn)
‘PEN-LEN ‘9ZN-EZN ‘B1N) 950
IOHINOD ONINIL o907 WIX
TOHINOD WYY - HW 8
]
@zn‘sin‘sin) -
(9en $s340qQv 21901
‘sen HS3IUA3H 10HINOD z_ms_o; _ ©on
(zen-Lvn) ..Mwu. {tinorn) s.o_ = ”wmnumwn £2v-£ov
mm.ﬂwp.xun v -ovd ¥3Ixad S31A€ %9i 93 O— ‘vzn-gzn)
“UINN wod 21901
ssavaav _ _ 30053a
Agowaw |\ PHV-tOY Elv-iov _| ssanaav
T i
o sna ssasaav £2v-10v
o = (ozn)
8 (110880S)
- | ©1000899W
2 TOHLNOD
w
$Ng viva $13-00Q
: : : : m 1=
4 ~ -
o » =] > [Q »
] 2 < £ 1S2 VIOV > 8
~_ ~_ ~~ 1 =~ ~_~ Y =~ 40 ‘ovn
{6n) @in) zohﬁhmfwc €1n) [— mw:.\.u“mm”w”_:.:v Nm_wﬂ_ﬁow.“__n_ t— , 13534
Lnd +SoLd 2 viov 3lvy anva L VIOV +S9 TOHINOD - {\r-—
0£2890W 05890W 058900 VoY [LdnuualiN
; .1383Y ' R oir , £73A31 » »
) A Y i (vrn) (
zn
mo<muwpr_ &n-1n) {on ‘sn) n ‘on) Mwmw —< 01901
2dvL syY3adang sy3ading sy3ading s 1N03WIL SNa
2L13SSVD Y3LINIYd eezsy zezsy
0 0 H ﬁ +HOd <«—— (bvn-2zvn)
@r) vd (tr) ed (vr) 2d (er) 1d avol —O
3113SSVO OL WILNINd OL (W3QOW) LSOH OL TYNIWYIL OL 13538 «— 1353y -IT-

zs

CHAPTER 7

HARDWARE DESCRIPTION

7.1 INTRODUCTION

Chapter 7 provides a functional description of the MC68000 Educational Computer
Board hardware, including a block diagram. With the description contained here
and the schematic drawings of Chapter 8, the user can gain a good understanding
of the board's design. Also discussed in this chapter is use of the wire-wrap
area of the board. Throughout Chapters 7 and 8, the asterisk (*) is used to
denote active low signals.

7.2 FUNCTIONAL DESCRIPTION

The MC68000 Educational Computer Board is a complete microcomputer system built
around a 4 MHz processor (MC68000L4). All memory and I/0 devices communicate
with the processor via a common unbuffered bus structure. The block diagram of
the board is shown in Figure 7-1, which illustrates data paths, the addressing
scheme, and control logic flow. The functional areas are described in the
following paragraphs.

7.2.1 MC68000L4 Microprocessor

The L4 version of the MC68000 is a 4 MHz clock device. The 4 MHz clock is the
time base from which all processor timing is derived (see MC68000 data sheet for
details). The 4 MHz rate does not relate to bus transaction times directly
because these can be either asynchronous in nature or generated by an E clock
which is supplied by the MC68000L4 (4 MHz divided by 10 = 400 kHz E clock).

7.2.2 Address Decode

The memory map for the educational computer is shown in Table 7-1. The Address
Decode Logic (U23-U24, U29-U34, U37-U38, U45) shown in Figure 7-1 generates
enable signals RAMEN, ROMEN, ACIA CS1l, and PITCS* in accordance with this memory
map. Address lines A03-A23 are decoded and used with the proper control signals
to generate these signals.

The RAM is addressed at the bottom of the map ($000007-5007FFF) excluding the
first eight locations which contain the initial stack pointer and program
counter contents and are stored in ROM. The RAM is divided into two areas; that
is, $000008-$0008FF the system area reserved for use by the system firmware, and
$000900-$007FFF the user area.

within the system area, addresses $000000-$0003FF are used for the MC68000
exception vector table. The remaining 1280 bytes (addresses $000400-$0008FF)
are used as scratchpad memory for the TUTOR firmware including data buffers,
pointers, temporary storage, etc.

The firmware ROM (EPROM) is located just above the RAM in the map at
$008000-$00BFFF.

All I/0 devices are mapped into the same 64K byte page at $010000-SO01FFFF.
Redundant mapping occurs within the page (that is, the same device appears at
several addresses) because the address is not fully decoded. Chapter 6 contains
Tables 6-1 and 6-2 which give the I/0 address maps in detail.

Also, a special signal (E6) is provided as a 64K-byte page decode located at

$030000-$03FFFF. This signal is intended to allow an M6800 type bus interface
via the wire-wrap capability.

TABLE 7-1., Memory Map

FUNCTION ADDRESS
Exception ROM/EPROM $000000-$000007 (1)
Vector RAM $000008~$0003FF
System Table
Memory
Tutor RAM $000400-$0008FF
Scratchpad
User Memory RAM $000900-$007FFF
Tutor Firmware ROM/EPROM $008000~-$00BFFF (1)
Not Used $00C000~S00FFFF
PI/T
(Lower byte only) $010000-$01003F

A

ACIA2 (Lower byte) $010040-$010043

& ACIAl (Upper byte) |
|

I/0 Devices

Redundant Mapping +
.
SO1FFFF
Not Used $020000~S$02FFFF
M6800 Page (E6) $030000-$03FFFF
Not Used $040000-SFFFFFF

NOTE: (1) Denotes read only

7-4

7.2.3 32K Byte RAM

Sixteen three-supply MCM4116B (16K x 1) devices (U47-U62) make up the dynamic
RAM array. These can be accessed either on a byte or word basis, and data
transfers to and from the MC68000 use asynchronous bus transfers. The memory
access time is approximately 450 nanoseconds and the RAM DTACK* is generated
about 500-625 nanoseconds after the start of a read or write cycle.

Operation of the memories is determined by the RAM CONTROL LOGIC (U18, U23-~U26,
U31-U34, U39, U42, U45, U46). The control logic generates timing control for
the RAM devices as well as control signals for the MEMORY ADDRESS MULTIPLEXER
(U27, U28, U35, U36). The multiplexer generates row and column addresses from
lines A01-Al4 during read and write cycles. Refresh addresses are also routed
to the memories by the multiplexer during memory refresh.

The DRAM's are completely refreshed once every 1.5 milliseconds on the average
(1.9 milliseconds worst case) using a technique called RAS only refresh. When
the refresh timer indicates the MCM4116B's need to be refreshed, the RAM CONTROL
LOGIC requests control of the MC68000 bus via a Bus Request (BR*) signal. This
is a convenient way to prevent the processor from accessing RAM during refresh.

The MC68000 releases the bus and asserts Bus Grant (BG*) in response to the BR¥*.
The RAM CONTROL LOGIC then asserts Bus Grant Acknowledge (BGACK*), releases the
BR*, and proceeds with the memory refresh. After the BR* is released, the
MC68000 releases BG* and waits for BGACK* to release.

During a refresh cycle, eight rows are refreshed at the rate of one row per
microsecond. Sixteen such cycles are required to completely refresh the memory
every 1.5-1.9 milliseconds. At the end of each cycle the BGACK* is released,
the MC68000 regains control of the bus, and processing proceeds.

7.2.4 16K Byte ROM

The system firmware (TUTOR) is stored in two 64K bit ROM's (Ul0, Ull). MCM68764
EPROM's or MCM68A364 ROM's can be used. Access time for the ROM's can vary from
350 nanoseconds to 450 nanoseconds, depending on the device used.

The system ROM can be read on a byte or word basis. Attempting a write to ROM
will result in a bus timeout error. The ROM also uses an asynchronous bus
interface with the ROM DTACK* returned 500-625 nanoseconds after ROMEN is
received. ,

7.2.5 Serial Communications Ports

Paragraph 6.2 discusses operation of the serial communications ports in detail,
Two MC6850 ACIA's provide the bus interface for the serial ports. ACIAl (U13)
is used for the terminal Port 1 and is connected to bits D08-D15 of the data
bus. ACIA2 (Ul2) is used for the host Port 2 and is connected to bits D00-DO7.

The baud rate generator (Ul4) provides transmit and receive clocks for both
ACIA's. Headers J9 and J10 are used to jumper select baud rates varying from
110 to 9600 baud.

Both serial ports are RS-232C compatible. Buffers U5, U6, and U7 translate the
ACIA voltage levels to RS-232C interface levels.

7-5

The ACIA's are the only devices on the Educational Computer Board that take
advantage of the MC68000's M6800 compatible synchronous interface. The ACIA's
can only be accessed using a synchronous type of bus transfer. These devices
are clocked by a signal called the E clock which is supplied by the MC68000
(E = 4 MHz divided by 10 = 400 kHz). Whenever the address decode signals that
either ACIA is to be accessed (VPA* is asserted), the MC68000 synchronizes
itself with the E clock and uses a synchronous bus cycle. More detail
concerning this mode of operation is given in Section 6 of the MC68000 User's
Manual, MC68000UM.

7.2.6 MC68230 PI/T (Printer Interface, Cassette Tape Interface, and Timer)

The MC68230 provides several features on the educational boartd. The PI/T
contains an on-board programmable 24-bit timer., Parallel Ports A and B of the
PI/T are buffered to drive a Centronics-compatible printer. Also, Port C of the
PI/T is buffered as a cassette tape interface. These are discussed in Chapter 6
of this manual.

The MC68230 is tied to data bus lines D00-D07 and uses the MC68000 asynchronous
interface.

7.2.7 Interrupt Control Logic

Devices Ul17-U19, U25, U40, and U41 compose the INTERRUPT CONTROL LOGIC. The
interrupt priority 1levels and vectoring techniques are discussed in
paragraph 6.6. The logic priority encodes the interrupt request and inputs the
highest request level to the MC68000 (IPLO*-IPL2*), The logic also monitors the
function codes (FCO-FC2) and generates interrupt acknowledge signals for the
proper device. ACIAl, ACIA2, ABORT, and the special MC6800 IRQ all require an
autovectored interrupt, and the VPA* signal is asserted. Also, when the timer
interrupt is acknowledged, TIACK* is asserted to the PI/T. Finally, when the
PI/T parallel port interrupt is acknowledged, PIACK* is asserted.

7.2.8 System Clocks

An 8-MHz crystal oscillator (Ul6) is the time base from which all clock
frequencies are derived. Counter Ul5 is used to generate 4-MHz and 1-MHz
clocks. The MC68000 runs from the 4-MHz clock. Control logic and other devices
in the system use all three frequencies as time bases.

7.2.9 Bus Timeout Logic

With an asynchronous bus interface, bus timeout logic (U21) must be provided.
The timeout logic ends the bus cycle if a device fails to respond within the
allotted time, and a bus error is signaled. A device may fail to respond due to
circuit failure, addressing a non-used location, or attempting a write cycle to
ROM. The bus timeout on the Educational Computer Board is about 10 microseconds
long.

7.2.10 System Initialization

The RESET LOGIC (U42-U44) provides system initialization under two modes. Under
system power-up, a timer agtivates both the RESET* and Power On Reset (POR¥)
signals. RESET* initializes the MC68000 and MC68230. All other timing devices
are initialized by POR*,

The second mode is when the reset switch S2 is activated. 1In this case, only
RESET* is activated and thus only the MPU and PI/T are initialized.

It should be noted that the HALT* line to the processor is also activated during
power—-up. An LED indicator is driven from the HALT* line and lights whenever
the processor is in a halt condition.

The initialization sequence for the MC68000 includes loading the supervisory
stack pointer and program counter values stored in ROM ($000000-$000007),
setting the status register to interrupt level 7, and beginning processing at
the PC address. This process starts up the TUTOR firmware package and
initializes all system registers and devices.

7.2.11 ABORT Function

Switch S1 activates the ABORT LOGIC (U44). Under this condition, a level 7
non-maskable interrupt is generated, which returns control of the system to
TUTOR. The ABORT routine does not reinitialize the system. The ABORT function
is useful to regain control of processing without destroying system conditions
such as existing register and memory contents.

The interrupt vector to the ABORT firmware is located in RAM. If this vector is
altered, the ABORT firmware may not be executed; the results are indeterminate.
A user-provided vector can be used. In this case, the user software will be
executed when the ABORT button is pressed. RESET will reprogram the vector to
point to the TUTOR firmware.

7.3 INTERFACE USING THE WIRE-WRAP AREA

The MC68000 Educational Computer Board provides a small wire-wrap area for those
users desiring to do custom interface. The location of the wire-wrap area and
the signal connection points are shown in Figure 7-2. The following paragraphs
provide a detailed discussion of various aspects of doing custom interface to
the ECB.

7.3.1 Wire-wrap Device Mounting Area

An area of approximately 3.5 square inches is provided to mount devices (see
detail Figure 7-3). Six rows of holes (24 holes/row) are available to mount
sockets or devices., The holes are on one~-tenth inch centers and the rows are
three-tenths inch apart. The component side of the board has seven metal areas
which are tied to the board's ground plane. On the opposite side of the board,
metal strips are provided which are tied to +5.0 Vdc power.

With the hole pattern provided, most standard dual-in-line devices can be

mounted, up to and including a 48-pin package. This is 1large enough to
accommodate another MC68230 PI/T as an example.

7-7

deam-a21TM 104 SIUTOd UOTIDSUUC) Teubls dOEM89XAW °Z-L TINOIJ
aNo
OGA S+
JAAZL +
OAATL - Il///
N
gcoee T
Sifo viro €ifo ZMro
| £

LS 1

v3dv
dVdm
Jdim

!—N[
N -

i

6v 0S

L

= LIF

— 9L

7-8

(N 7N

SIX ROWS OF — 0.3”
DEVICE MOUNTING
HOLES

,

NE

A TN AN A A A
//, 0200%00%900%900%00° 0
0 o o o) o o)
o Yo Yof of of)of\
J16 o) o) o) o) o o)
[o o o) o) o o
—@®1 |o o} o) o o 0 0.1”
| o) o o o) o o)
o) o o) o) o) o)
221l ol lo| lof o |o
oollle o o) o) o o)
o o o) o) o o
221 lo] o oSNBol 1o o
oollle o o o o) o) MEX68KECB
oollle o) o) o o) o COMPONENT SIDE
oolllo o o o) o) o
Sollle o) o) o) o o)
oollle o o o o) o]
oolllo o o) o o o
oolllo o) o) o o) o
oollle o o) o o o
oollle o o o o) o)
oollle o) o o o o)
oollle o) o o o o)
oo«%oOQOOQOOQOQOOOQO
00 ‘\\\‘\\\‘\\j\\\ METAL AREAS
oo \\ \ CONNECTED TO
oo GROUND
oo
0 Oy
00 SILKSCREEN OUTLINE OF 50-PIN RIGHT ANGLE HEADER
00 (3M #3433-3005 OR EQUIVALENT)
ocgé1 ‘
| HOLES FOR HEADER PINS
._gk;
\ HEADER PIN #1 LOCATION
A

0.106” HOLE FOR HEADER MOUNTING SCREW

NOTE: METAL AREAS CONNECTED TO +5.0 VDC
ON OPPOSITE SIDE OF BOARD

FIGURE 7-3. Detail of Wire-wrap Area

7.3.2 Auxiliary I/O Header J16

In addition to the wire-wrap area, the ECB has provision for an auxiliary I/O
header (designated J16). The Figure 7-3 detail shows the location of the
header, and Figure 7-4 illustrates the header mounting detail. The hole pattern
is designed to accept a 50-pin wrap tail right angle header (standard profile)
which is 3M #3433-3005 or equivalent.

When mounting the header as shown in Figure 7-4, two #2 x 3/8 inch screws and
two #2 hex nuts are used. The board silkscreen shows an outline of the header.
A 50-pin ribbon cable can be connected to this header, and signals are
wire-wrapped to the header wrap tails.

7.3.3 MC68000 Bus Signal Connections

A connection area designated J17 gives access to the MC68000 bus signals and
system timing. Figure 7-2 shows the location of J17 and gives pin locations.
Table 7-2 lists J17 pin number vs. signal designation and also shows attributes
of these signal lines.

To use the signal lines, individual wire-wrap pins should be mounted in the
holes. These can be soldered in or press fit. Connections are then wragped to
these pins.

7.3.4 Extending System Address Decode

The memory map for the educational computer is given in Table 7-1. When using
the wire-wrap area, the designer must not put devices at any of the occupied
address locations. To facilitate user address decode, connection points El
through E6 have been provided on the board, which give enable signals for unused
areas of the MC68000 memory map. These connection points include two types:

a. Oonnection points El1 through E5 (see Figure 7-2 for logation) give
decode signals for various segments of the MC68000 upper memory map.
Figure 7-5 shows the address decode logic and Table 7-3 lists the
decoded segments,

Each signal is low when enabled, and the user can utilize one of these
enables as upper address decode. The signal is valid whenever the
selected address segment is decoded and AS* is asserted.

b. Connection point E6 is used to select a memory segment for M6800

synchronous interface located at addresses $030000-$03FFFF. Paragraph
7.3.6.1 discusses this in detail.

7-10

#2 HEX NUT

MEX68KECB

50-PIN WRAP TAIL
RIGHT ANGLE HEADER
(3M #3433-3005 OR EQUIVALENT)

#2 x 3/8” SCREW

FIGURE 7-4. Auxiliary I/0 Header Mounting Detail

7-11

TABLE 7-2. J17 Signal Designations

PIN SIGNAL 4700 ohm THREE-
NO. NAME DESCRIPTION PULLUP STATE
1 D04 Data Bus Bit 4 Yes Yes
2 D03 Data Bus Bit 3 Yes Yes
3 D05 Data Bus Bit 5 Yes Yes
4 D02 Data Bus Bit 2 Yes Yes
5 D06 Data Bus Bit 6 Yes Yes
6 4 MHz CLK 4 MHz System Clock No No
7 D07 Data Bus Bit 7 Yes Yes
8 Dl4 Data Bus Bit 14 Yes Yes
9 DO8 Data Bus Bit 8 Yes Yes
10 D15 Data Bus Bit 15 Yes Yes
11 D09 Data Bus Bit 9 Yes Yes
12 RESE System Reset Yes No (0.C.)
13 D10 - Data Bus Bit 10 Yes Yes
14 D01 Data Bus Bit 1 Yes Yes
15 D11~ Data Bus Bit 11 Yes Yes
16 E E Clock (400 kHz) No No
17 D12 Data Bus Bit 12 Yes Yes
18 AS* Address Strobe Yes Yes
19 D13~ Data Bus Bit 13 Yes Yes
20 UDS* Upper Data Strobe - Yes Yes
21 DOO: Data Bus Bit 0 Yes Yes
22 LDS* Lower Data Strobe - Yes Yes
23 AlS5 - Address Bus Bit 15 Yes Yes
24 R/W* Read/Mrite Yes Yes
25 Al4- Address Bus Bit 14 Yes Yes
26 Al3“ Address Bus Bit 13 Yes Yes
27 Al2 Address Bus Bit 12 Yes Yes
28 FC2 Function Code Bit 2 No Yes
29 All Address Bus Bit 11 Yes Yes
30 FCl Function Code Bit 1 No Yes
31 AlO Address Bus Bit 10 Yes Yes
32 FCO Punction Code Bit 0 No Yes
33 A09 Address Bus Bit 9 Yes Yes
34 A0l Address Bus Bit 1 Yes Yes
35 A08 Address Bus Bit 8 Yes Yes
36 A02 Address Bus Bit 2 Yes Yes
37 A06 Address Bus Bit 6 Yes Yes
38 aA03 Address Bus Bit 3 Yes Yes
39 A07 Address Bus Bit 7 Yes Yes
40 A4 Address Bus Bit 4 Yes Yes
41 A0S Address Bus Bit 5 Yes Yes
42 DTACK* Data Transfer Ack. (1) No No
43 8 MHz CLK 8 MHz System Clock No No
44 6800 IRQ* M6800 Interrupt Request (2) Yes
45 1 MHz CLK 1 MHz System Clock No No
46 VMA* valid Memory Address No Yes
NOTES:

(1) DTACK* cannot have device outputs connected to it.
See Paragraph 7.3.5.

(2) 6800 IRQ* is an input only line,

7-12

TABLE 7-3. 2Address Segment Enable Signals for Wire-wrap Users

ENABLE SIGNAL ADDRESS SEGMENT
El $020000-$02FFFF
E2 $040000-$04FFFF
E3 $050000~-$05FFFF
E4 $060000-S06FFFF
ES5 $070000-S07FFFF
NOTE: Signals are a low TTL level
when enabled.

u30
LS138
YO o—:—i——» TO MEMORY ENABLE DECODE
Y1 075————> TO PERIPHERAL ENABLE DECODE
A16 1 Y2 0 12 O &1
7 5 A Y3 011—> TO 6800 PAGE ENABLE DECODE
A18 3 8 Yap 10 O E2
219 c Y5 09—0 E3
A20 6 Y6 O 7 O E4
Y7 O———Q E5
A21 [5)
A22 4 q| E
A23 47 el
AS*

FIGURE 7-5. Address Decode Logic For Memory Map Primary Segments

7-13

7.3.5 Asynchronous Bus Interface

Although the MC68000 is capable of doing synchronous bus operations, it is
primarily an asynchronous bus machine. The user can interface additional
devices to the on—board asynchronous bus via the wire-wrap area; however, care
must be taken. The following guidelines apply:

a. The on-board MC68000 bus is unbuffered. The user must not exceed
loading requirements of the MC68000.

b. The user must meet timing requirements specified on the MC68000 Data
Sheet.

c. Access to the MC68000 signal lines is provided via J17. Special care
must be taken with DTACK* (Data Transfer Acknowledge). The processor
DTACK* is generated by ANDing DTACK PIT*, DTACK RAM*, and DTACK ROM*, as
shown in Figure 7-6. The processor DTACK* goes low whenever any of
these go low. The user cannot add another signal to the processor
DTACK* because this signal is not an open-collector output.

A USER DTACK* is connected to the system via connection point E7 as
shown in Figure 7-6. The PIT DTACK* is turned off when not required,
and the USER DTACK* can be bussed to this point. A 4700 ohm resistor
holds PIT DTACK* high when the driver is turned off. The USER DTACK*
must be an open-collector or three-state driver. (E7's location is
between packages U24 and U25 as shown in Figure 7-2.)

d. If an interrupt capability is required, the user is restricted to an
M6800 type autovectored priority level 4 interrupt. See paragraph
7.3.6.2 for usage.

CONNECT
USER DTACK*

+5V

E7
§ 4700
PIN 42, J17

—~ 1 .
|

DTACK PIT*

DTACK RAM*

DTACK ROM* I—_

FIGURE 7-6. DTACK* Signal Generation

7-14

7.3.6 M6800 Type Synchronous 8-Bit Bus Interface

The MC68000 supports M6800 type synchronous bus transfers through the use of
signal lines VMA*, VPA*, and E. Section 6 of the MC68000 User's Manual
(MC68000UM) discusses these signal line functions in detail. The user can
utilize the synchronous interface on the educational computer. The existing
MC6850's also use this interface.

The same guidelines apply concerning bus loading, processor timing, and J17, as
mentioned in paragraph 7.3.5. The educational computer also has special
provision for user interface into the synchronous bus.

7.3.6.1 M6800 Page Address Decode. A 64K-byte segment of the system memory map
is reserved for an M6800 type interface. Connection point E6 is enabled high
whenever this page ($030000-$03FFFF) is selected. Connection point E6 can be
located on Figure 7-2, and Figure 7-7 shows the logic generating signal E6.

The M6800 page enable E6 is activated when memory page $030000-$03FFFF is
selected and both VMA* and LDS* are asserted. The memory page enable is first
activated, which, in turn, activates VPA*, After the MC68000 receives VPA*, the
processor synchronizes itself to the E clock and continues the bus cycle by
asserting VMA*. Signal E6 recognizes that the M6800 page has been selected,
VMA* has been asserted for a synchronous cycle, and the LDS* is asserted
indicating a bus transfer on the lower eight data bus bits. Thus, the user must
interface into the lower eight bits of the data bus when using signal E6.

u30
PAGE $030000-03FFFF
12 TO VPA*
Y3 O- > DECODE
VMA* E6
LDS*

FIGURE 7-7. M6800 Page Address Signal Generation

7-15

7.3.6.2 Autovectored Interrupt Level 4, To facilitate an M6800 type interface,
the educational computer also provides an autovectored interrupt request via Pin
44 of J17. When the interrupt request line is asserted (taken low), the MC68000
receives a level 4 priority interrupt. A level 4 interrupt acknowledge cycle
from the MC68000 causes an autovectored response with the vector number equal to
28 (decimal) or $1C (hex).

The interrupt request must be held asserted until the interrupt service routine
clears the interrupt request. The user must supply the interrupt service
routine in his software, and he must also initiate the exception vector table at
address $000070.

The M6800 interrupt request can also be used for devices on the asynchronous bus

interface. The user must only follow the same rules for use and be aware the
response is an autovectored interrupt.

7-16

8.1

8.2

8.3

8.4

8.5

CHAPTER 8

SUPPORT INFORMATION

INTRODUCTION cecoeoososovscvosscccscssssosscesocssscssosncscocsossnnsnocscsocss
CONNECTOR SIGNAL DESCRIPTIONS eccesecsscsccccccscscssscccescsocsoscccoss
JUMPER HEADER, CONNECTOR, AND SWITCH LOCATIONS seceecscccccscccccscce
PARTS LIST ceeececsssceesecesosccescossascscesosanscnscsccssososcecscccssoscss

DIAGRMS $ 000 0000000000 RNIS 00000000008 000000600000000000000s060000600s00

Page
8-3
8-3
8-3
8-3

8-3

SUOT3eDO] UOJIMS pue ‘10309uuc) ‘I9pesH doAM8IXAW °*T-8 :NOIJ
aNbD
OAA S+

JaA L+ HOLIMS HOLIMS

1334 1ldoav

JAAT) -~
'/ |
4 [L 11 wor

6

SIF wr ELF ZiP prs s m/
Lir 13s34
W31SAS
S1VNDIS
— e sng
000890W
31vd anva zZ 1 -
1SOH OXHIOXL OXHIOXL L 2 -
I VIOV N VIOV [
g
8r 30V44ILNI | g,p HOLOINNOO O/l
3dvl AHVIIXNY
3113SSYD %2019
3ivy anve olanv W3LSAS VIV
TYNIWY3L \ / dVHM
IHIM
(o) 3 L _
or or 6v 05
3 \

3 _.— 8 6} 3 6} I 6v _u_ %
_ | l _ | L r | t _
(¢ 140d) (1 140d) (v L4Od) (e 1HOd)

1SOH TVNIWH3IL 31138SVO H3iNIdd
vr er er i

8-2

CHAPTER 8

SUPPORT INFORMATION

8.1 INTRODUCTION

This chapter provides the interconnection signals, parts list, and schematic
diagrams for the MC68000 Educational Computer Board.

8.2 CONNECTOR SIGNAL DESCRIPTIONS

Tables 8-1 through 8-4 give pin numbers, signal mnemonics, and signal names and
descriptions for connectors J1 through J4.

8.3 JUMPER HEADER, CONNECTOR, AND SWITCH LOCATIONS

Figure 8-1 shows the MEXG68KECB jumper header, connector, and switch locations.
Table 8-5 lists the connection "J" numbers and gives the appropriate manual
paragraph where each is described. The only jumper not discussed elsewhere in
the manual is SYSTEM RESET header J1l. If pins 1 and 2 of the header are
jumpered together, a total system reset occurs (HALT*, POR*, and RESET* are
activated). This is normally used only for test purposes.

8.4 PARTS LIST

Table 8-6 lists the components of the MEX68KECB. Figure 8-2 illustrates part
locations. The parts list reflects the latest issue of hardware at the time of
printing.

8.5 DIAGRAMS

Figure 8-3 shows the schematic diagram for the MEX68KECB MC68000 Educational
Computer Board.

8-3

Connector J1 Printer Port 3 Pin Assignments

SIGNAL NAME AND DESCRIPTION

TABLE 8-1.
PIN SIGNAL
NUMBER MNEMONIC
9 PB7
11 PB6
13 PBS
15 PB4
17 PB3
19 BUSY (PB2)
21 PAPER OUT

(PB1)

23 SELECT (PBO)
1 INPUT PRIME*
5 FAULT*
43 DATA STROBE*
47 ACKNOWLEDGE*
25 PD7
27 PD6
29 PD5
31 PD4
33 PD3

Port B, bit 7 Unbuffered data line for PI/T Port B

Port B, bit 6 - Unbuffered data line for PI/T Port B
Port B, bit 5 - Unbuffered data line for PI/T Port B

Port B, bit 4 Unbuffered data line for PI/T Port B

Unbuffered data line for PI/T Port B

Port B, bit 3

BUSY - Signal from printer when high indicates that
printer is busy (connected to PB2).

PAPER OUT - Signal from printer when high indicates that
printer is out of paper (connected to PBl).

SELECT - Signal from printer when low indicates printer
is deselected (connected to PB0).

INPUT PRIME - Buffered output to printer when low causes
printer input buffer to be cleared and printer logic to
be initialized.

FAULT - Signal from printer when low indicates fault
condition.

DATA STROBE - Buffered output to printer when low
indicates valid data on PDO-PD7.

ACKNOWLEDGE - Signal from printer when low indicates
printer has accepted data on PD0O-PD7.

Printer data, bit 7 - Buffered data output to printer
(connected to PI/T Port A)

Printer data, bit 6 - Buffered data output to printer
(connected to PI/T Port A)

Printer data, bit 5 - Buffered data output to printer
(connected to PI/T Port A)

Printer data, bit 4 - Buffered data output to printer
(connected to PI/T Port A)

Printer data, bit 3 - Buffered data output to printer
(connected to PI/T Port A)

8-4

TABLE 8-1. Connector Jl Printer Port 3 Pin Assignments (cont'd)
PIN SIGNAL

NUMBER MNEMONIC SIGNAL NAME AND DESCRIPTION

35 PD2 Printer data, bit 2 - Buffered data output to printer
(connected to PI/T Port A)

37 PD1 Printer data, bit 1 - Buffered data output to printer
(connected to PI/T Port A)

39 PDO Printer data, bit 0 - Buffered data output to printer
(connected to PI/T Port A)

All GND GROUND

even

pins

plus

3,7,41,

45,49

TABLE 8-2. Connector J2 Audio Cassette Tape Interface Port 4 Pin Assignments

PIN SIGNAL

NUMBER MNEMONIC SIGNAL NAME AND DESCRIPTION

1 DATA IN DATA IN - Data input to tape interface logic.
Connected to tape recorder output for data playback.

3 DATA OUT DATA OUT - Data output from tape interface logic.
Connected to tape recorder microphone or auxiliary
input to record data.

5 TIN TIMER IN - Input to PI/T timer that can be used as
external clock source or clock enable.

7 PC4 PI/T Port C, bit 4

9,11, NC Not connected

13,15,

17,19

2,4,6, GND GROUND

8,10,12,

14,16,

18,20

TABLE 8-3. Connector J3 Serial Communications Port 1
(To Terminal) Pin Assignments

PIN SIGNAL

NUMBER MNEMONIC SIGNAL NAME AND DESCRIPTION

3 TX DATA TRANSMITTED DATA - Serial data signal from terminal
to educational board.

5 RX DATA RECEIVED DATA - Serial data signal to terminal from
educational board.

9 CTS CLEAR TO SEND =~ Control signal to terminal.
Activated by DIR on educational computer.

11 DSR DATA SET READY - Control signal to terminal.
Activated by DTR on educational computer.

14 DTR DATA TERMINAL READY - Control signal from terminal
indicating terminal is on-line.

15 DCD SIGNAL. DETECT - Control signal to terminal.
Activated by DTR on educational computer.

13 GND Signal ground.

1,2,4,6,7,8, NC Not connected.

10,12,16,17,

18,19,20

TABLE 8-4. Connector J4 Serial Communications Port 2
(To Host/Modem) Pin Assignments

PIN. SIGNAL

NUMBER MNEMONIC SIGNAL NAME AND DESCRIPTION

3 TX DATA TRANSMITTED DATA - Serial data signal to host/modem
from educational board. ’

5 RX DATA RECEIVED DATA - Serial data signal from host/modem
to educational board.

7 RTS REQUEST TO SEND - Control signal to host/modem.
Always high level.

9 CTsS CLEAR TO SEND - Control signal from host/modem.
Indicates host/modem can accept transmitted data.

14 DTR DATA TERMINAL READY - Control signal to host/modem.
Indicates educational board is on-line and ready.

13 GND Signal ground.

1,2,4,6,8, NC Not connected.

10,11,12,

15,16,17,

18,19,20

TABLE 8-5. MEX68KECB Connector and Header Manual References

REFERENCE

DESIGNATION NAME PARAGRAPH

Jl Printer connector - Port 3 2.5.1

J2 Cassette tape connector - Port 4 2.5.3

J3 Terminal connector - Port 1 2.3.1

J4 Host connector - Port 2 2.5.2.2

J5 Audio cassette tape interface 6.4.3

J6 System clock 2.2.3

J7 ACIA2 TXC/RXC 2.5.2.1

Jg ACIAl TXC/RXC 2.2.4.2

J9 Host baud rate 2.5.2.1

J10 Terminal baud rate 2.2.4.1

Jll System reset 8.3

J12 Ground)

J13 +5 Vdc 2.9.2.2

Jl4 +12 vdc

J15 -12 Vch

J16 Auxiliary I/O connector 7.3.2

J17 MC68000 bus signals 7.3.3

8-7

TABLE 8-6. MEX68KECB Parts List
REFERENCE MOTOROLA
DESIGNATION PART NUMBER DESCRIPTION
84-W8111B01 Printed wiring board, MEX68KECB
C1-C20, 218W992C025 Capacitor, ceramic, .100 uF @ 50 vdc
C22-C24,C26
c21 21SW992C014 Capacitor, ceramic, .010 uF @ 50 Vdc
C25 21NW9604A60 Capacitor, ceramic, 1000 pF @ 50 Vdc
c27 21NWO604A11 Capacitor, ceramic, .47 uF @ 50 Vdc
C28-C58 21NW9702A09 Capacitor, ceramic, .1 uF @ 50 vdc
C59 23NW9704A23 Capacitor, tantalum, .33 uF @ 35 Vdc
C60,C62 23NW9618A33 Capacitor, electrolytic, 22 uF @ 25 Vdc
Co6l 23NW9618A09 Capacitor, electrolytic, 100 uF @ 16 vdc
CR1,CR2 48NW9616A03 Diode, silicon, 1N4148/1N914
CR3 48NW9612A24 Diode, light emitting, red
J5 28NW9802D86 Header, single row, 3-pin
J6-J8,J11 28NW9802D01 Header, double row, 2-pin
J9,J10 28NW9802B34 Header, double row, 16-pin
R1,R17 06SW-124A65 Resistor, film, 4.7k ohm, 5%, 1/4 W
R2 06SW-124A41 Resistor, film, 470 ohm, 5%, 1/4 W
R3 06SW-124A89 Resistor, film, 47k ohm, 5%, 1/4 W
R4,R7,R8 06SW-124A73 Resistor, film, 10k ohm, 5%, 1/4 W
R5,R6 06SW-124A43 Resistor, film, 560 ohm, 5%, 1/4 W
R9,R11 06SW-124A57 Resistor, film, 2.2k ohm, 5%, 1/4 W
R10 06SW-124A97 Resistor, f£ilm, 100k ohm, 5%, 1/4 W
R12 51NW9626A51 Resistor SIP, five 27k ohm
R13,R16,R30,R36 51NW9626A47 Resistor SIP, seven 4.7k ohm
R14,R15,R29,R35 51NW9626A41 Resistor SIP, nine 4.7k ohm

TABLE 8-6. MEX68KECB Parts List (cont'd)
REFERENCE MOTOROLA
DESIGNATION PART NUMBER DESCRIPTION
R18-R28 06SW-124A17 Resistor, film, 47 ohm, 5%, 1/4 W
R31 06SW-124A92 Resistor, f£ilm, 62k ohm, 5%, 1/4 W
R32 06SW-124A74 Resistor, £ilm, 11k ohm, 5%, 1/4 W
R33,R34 06SW-124B22 Resistor, film, 1.0M ohm, 5%, 1/4 W
R37 06SW-124A29 Resistor, £ilm, 150 ohm, 5%, 1/4 W
R38 06SW-124B50 Resistor, film, 15M ohm, 5%, 1/4 W
S1,S2 40NWO801A54 Switch, push, SPDT, momentary contact
Sl 38NW2404B96 Switch cap, red, medium
52 38NW9404A56 Switch cap, black, medium
ul 51NW9615D27 I.C. SN74S32N
U2,u3,U34 51NW9615C24 I.C. SN74LS32N
U4 51NW9615B75 I.C. MC3302
us,u7 S1INW9615B29 I.C. MC1488L
U6 51NW9615B30 I.C. MC1489AL
us,u25,U44 51NW9615E91 I.C. SN74LSOON
02) 51NW9615H45 I.C. MC68230L8
ul0 51AW4129B09 programmable I.C., UL0, TUTOR
ull 51AW4129B10 Programmable I.C., Ull, TUTOR
ul2,ul3 51INW9615B94 I.C. MC6850P
ul4d 51NW9615B54 I.C. MCl14411p
Ul5 S51NW9615H47 I.C. SN74LS93N
Ule 48AW1068B04 Crystal oscillator, 8.0 MHz, 1%
ul7 S51INW9615F05 I.C. SN74LS20N
Ul8,u32 51NW9615C21 I.C. SN74LS04N
u19 51INW9615F35 I.C. SN74LS21N

8-9

TABLE 8-6. MEX68KECB Parts List (cont'd)

REFERENCE MOTOROLA

DESIGNATION PART NUMBER DESCRIPTION

u20 51NW9615H81 I.C. SC88011L (MC68000L4)

u21,U22,U39 51NW9615F16 I.C. SN74LS175N

u23 51NW9615C22 I.C. SN74LS08N

U24,U045 51NW9615EF76 I.C. SN74LS11IN

u26 51NW9615F38 I.C. SN74LS393N

u27,U28,U35,U36 S1INW9615E84 I.C. SN74LS153N

u29,037 51NW9615E89 I.C. SN74LS260N

u30 51INW9615C69 I.C. SN74LS138N

U3l 51NWI615E77 I.C. SN74LS27N

u33 51NW9615C20 I.C. SN74LS02N

u38 S51NW9615E88 I.C. SN74LS10N

u40 51NW9615G10 I.C. SN74LS148N

U4l 51NW9615F52 I.C. SN74LS273N

u42 51NW9615C60 I.C. MC3456P

u43 51NW9615A90 I.C. MC7405P

U46 51NW9615C25 I.C. SN74LS74N

U47-U61 51NW9615H86 I.C. MCM4116BP-30

VR1 51NW9615H08 I.C. MC79L0O5ACP

Yl 48BW1357X01 Crystal 1.8432 MHz
09NWO811A04 Socket, I.C., D.I.L., 16-pin
09NW9811A02 Socket, I.C., D.I.L., 14-pin
09NW9811A15 Socket, I.C., D.I.L., 24-pin
O09NW9811A30 Socket, I.C., D.I.L., 64-pin
29NW9805B17 Jumper, shorting insulated
28NW9802E35 Banana jack, .250" mounting hole
04SW995A014 Washer, interlocking, .250"

8-10

weibe1q uoT3IEOO0T S3IARd GOENSIXAW *C—-8 I¥NOIJ
— O
zs 1S ey €0 £EY 264
=
/ /)
G \.N\wuo [
v
- mo 9ed| || ovn son vn eon zvn orn sen 8en 8N
D
950 150 90 SSD $SD £9Q 2D 15D 0SD 6¥D 20 629 zzof 129 020 fs1o 819
() ‘V_VAZ.A. (Y () {)0 SEY 0EY
by 624
(-]
z9n ton 09n 65N 950 280 9sn ssn wmm 9N sen ven cen 260 Len oen ez
92y 0zn
0y
AJOl A aJ ol a adl a . o sy - Ak 910
SCYOMSCIC NI ST I (N 18 [Jseo bd o T T T T T
N E R E I E o —
oz
6Ly
ysn £sn zsn sn osn 6vN avn 0 oyl 820 zn 02N ezn vz czn zzn zn
N . I . . " _ ?o p10) £10]
S€D qnoU 280 153 0D 620 820
oir
) s - ~
6 r
61N 8in mn 9in sin
m L~ f\/lwro.l\(l) rll
(9]
N wn |2 en |9 zin LN on
9ty
6N
LA 9y - Sy - vid - C Jeiy Do_.
Sr DNIDDODID
NN LS WN -
an mn 9n sn Tl en D n
20 0 90 o) IT/IDOQ f4e] 8]
] H] ﬁ\r 23%% 23 4}
3—‘_ _ _ er __ zr ﬁ e _._ %

8-11/8-12

NOTES:

L FOR REFERENCE DRAWINGS REFER TO
BILL OF MATERIAL @1-w3180!

2. UNLESS OTHERWISE SPECIFIED:

ALL RESISTORS ARE IN OHMS,* % PCT, POWER /GROUND TABLE CONT'D
174 WATT.
ALL CAPACITORS ARE IN UF. oES| /A GND +3V -3V R2VI-IeV
ALL VOLTAGES ARE DC. UaTIMCMAIG 19 1 18
3 INTERRUPTED LINES CODED WITH THE U4BIMCM411G FEERRRE
SAME LETTER OR LETTER COMBINATIONS U4 IMCMA1 16 ARERIRE
ARE ELECTRICALLY CONNECTED. USBMCMAI G AR E
DEVICE TYPE NUMBER IS FOR REFERENCE US1 IMCM3116 Gloli s
ONLY. THE NUMBER VARIES WITH THE USZNCMAING FRERRRE
MANUFACTURER.
5 J16 CUSTOMER USE OPTION (52 PINS). 323 xgm::g ,'§,’ 2 : 2
DEVICE TYPE NUMBERS AND CONNECTIONS USSIMCVAITG AER R
NOT SHOWN ON SYMBOL ARE LISTED
BELOW. UNDERLINED PORTION OF TYPE U56 IMCMal1e 191118
NUMBER IS USED AS A CODE TO IDENTIFY U57|MCM4116 |91 [8
DEVICES ON DIAGRAM. uS8MCVaT 16 169} ! 8
U59MCM4116, RAERERE
V6B IMCM 4116 l9li1]8
oes| /A GND|+5V -5V |- V-2V UGl [MCM4116 eloli |8
UT 174 932 T 17a UGZ|MCMa 116 RENERE
v2 |74L532 7 |14
U3 (74532 7 114
U4 |MC3302 IEE
US MC1488 7 14 |
U6 MCI1489A 7 {14
U7 [MC1488 7 14] 1
Us [74L.500 7 114
U9 MC68230 38 |12
U110 MCM68764) 12 |24
U1 1 |MCMeBT6 4 12 |24
U12 [MC6850 NIE
U13 IMCE850 T (12
Ul4 [MCi4a)i 12 |24
1S [74L593 TR
vie 7 | 4
u17 [T4L520 7]1a Yi
UIs [7TaLSP 4 7 [ia YRi
U119 [74,.521 7 [14 Va2
V2@ [MCcreooe J6.5304,49] S2
U2i {1 74LS1T5 8 16 R3ag
UZ2 (14,5115 8 |16 17
U23[74L.508 7 |14 £7
U24 7405110 7 |4 CR3
U25[74L5008 7 |4 Ce2
V26 |[74L5393] 7 |14 HIGHEST
Va7 lALsiss e e Nggsagn NOT USED
28 [74L5153 8 116 3
oS taLs3es e REFERENCE DESIGNATIONS
U3e[TAL5138 8 | 16
U3l |74L527 7114
US2 [74L5G 4 7 114
v33]74L5@2 7 114
ua4f74Ls32 7 |14
U3S[TALS153 B |6
U36 17415153 8 |16
U37 (7415260 7 14
U38 [74L518 7114
V39745175 8 |16
U4G{74L 5148 8 |16
Uai1T4LS2T: 1@ 120
V42 MC3456 7 114
U43|MCT405 7 | 4
U44/74L 500 7 |14
U4SI74LS 11 7 |4
V46741574 7 |1

PART OF

- GND

<}HHHIIIIHJ‘HHHHIIIH!HJ

12| [-GND

NC —113 - NC

PART OF
J3

NC—] |
NC—117 }NC

NC —1 19

5—’ 13| GND

NC — 2
NC— 4
NC -6
NC —1 8B
NC — 1
NC —12
NC — 7
NC — 16
NC — 18
NC —2¢

4,

NC

PART OF
Ja

ne— 1]
NC—3 17| - e

NC— 19

{ 1I3|GND

NC-—2
NC—1 4
NC — &
NC— 8
NC —1©
NC —{ |
NC -1

— NC

NC — 15
NC — 16
NC — 18
NC —20

- +12V
CZS | C31] C331C35J, cselcss
$ £ $‘| g" $ i.' i
| C42 | C45J. C471 c4ao] CSZ_l.CSSl c58

RN A A&

Lee czcaz\,gg: - G"f’oma lzalclaolcaa c|34J,cs7
P Friyy
\M.Iqﬁlf;ﬁ \L? Glffﬁxl/ C53l C56
FESETY
R Py o g %) P
Py yyyidy
[Tolololo [olo L
g.l g.l g.l ;.l @.l g.l $.I g.
ollalo oo ole
PRyl

uaD
MC33@2
ne 13
0 NC
NC

U3BaA uasc UIBA
LsS\g L5@4

ZZZ

O0On

sl -
3

22

[eXaXe]

Cjw
3

uiD
Ri2C

232
NC =~ 14 nc'e 1) 27K,
NC éD—NC sV a2 ne
9 NE
NC—-—J—

NOT USED

\ !¢ \ 15

(NI 4 N)
4 < 4 < \ N ADI
N - AB2
+5v 4’?,;4; J17 At *5v N < ap3
! \ D24 12 D23 4 N - AZq_
] < © 4 A N DY
RI4G R14D N . A@?I
1700 \ 0?5 3 4 poe 4 708 N ag7
8 5 \ Ags [FRSH 2 (F-8)
45;; N Atg
7 \ 028G $ @ AMHZ cLK N ol ALl
[RAE-] N Al2
N -
487;5 R%SH A13
A \ 027 78 D14 70 Ai4
AT © 4 ChAAE A5 |
.5 23
! ,_Dge 2 12 DI5 4 N - DO
| Nra S o % AN N - A5 N
RISC N DBz
aree \DB2 Il 12 RESET« N\ 0Z3
YV g © N N - D34
58 s \
q7 13 14 4
A h D1 3y Do} / 4wéz’l N ~ Dg7
RIS - DOB_ | R sy 2 (G-18)
o N K] z
%8 o 15 18 E \ Do
) [N N Dt
47%;;' 45:53: N Di2
A h D12 17 18 AS ¥ ! N\ - D13
(A ; o AN ERAAE - Di4
4%5’8 '7”;; \ OIS)
e \ DI3 12 &¢ YOS * 4
- ° Ay 7Y™
753 558
122 9
s \ Dg¢ CARX LOSH] A
<738 s
_AIS 23 24 R/W#¥ 47
Tz Y 5V
RI7 R29A
+5v_3\7¢e$__ m4—.z? [Al3 A 4l¢ee
2 1
R29B
4700 | AI2 27 ?,cB Fce
] 3 N
R29C
‘-19(0 AN P 3¢ FCt
t 4 - N
Rzap
479 AKS 3 3z FCg
A N o
R M- © N
R29E R 3Q@F
RV Y 3339 A | A 4799
M7 T
4108 35 3 550
s A28 > AQ2 A4 e ‘
Réar Rg%f
a7 37 38 a7
' AN'a . ARG AR AQ3 A A |
R29G R30D
17g¢@ [a@7 39 48 ap4 2 4iea
T Y8 M
R29J ® p VMA KX _
47 GBI IR@ X
i N AGS 4 DYACKX | - TNHZ CLK
1 7] d 4MHZ CLK
¢ ~ BMHZ LK
8 MHZ L 43 49 gagg IRAX RESET R
€
ASH | . _
IMHZ K 95 46 ymax # T osx [FRM (G
v o N LDS *
R/W X
FCe
a FC1!
¢ FC2
d DTACK *
/
. \ 15 J
O3JW3IIB REVD SHI OF 3
FIGURE 8-3. MEX68KECB MC68000 Educational Computer Board Schematic Diagram

(Sheet 1 of 3)
8-13/8-14

TO SHI (F-2)— —

TO SH1 (G-3)

T0 SH i (B-3)—

| e

AlG

All

Al 2

Al3

Ald4

Al5

15

5V

I%RSSD
24700

+5V

%R:&S
M

+5v 45V

:

4

R35C %
470D

R34
I'M

U428
MC34 56

~

+5V

RIsA :C26

4700 T.l
2

=1L

TSh
v
TRG
R

b3

55 12

1 ca7

\\\\\L\LK\\\L\\

VMA %

680 IRQ*
I MHZ CLK

4MHZ CLK

_BWMHZ CLK

RESET *
E

AS %

UDS %

DS%

R/ W %

FCD

FC1

FC2

DTACK %

VIV IIIIY

+5v

& R35B
24729

+5v SV

|
S RI2A ¢ R3pE
S 400 h? 4700

~n

PIRQ %
TOUT »

IJﬂ

Ulé
(B Mk

8
13

TOUT% I4
rPR % 17
600 IRQ¥IS |
&I]RQ*S

Qx 4

V4 MHZ CLK H)
4

+5V

Lo
LN (7))

~

6B@2 1IRG %

+5Y

R37
158

CR3

U430
MC74®5e

19

U43€E
UC740
1"

HALT #

u43C
MC 7405

POR

| MHZ CLK

ot

U438
MC7405

HALT %

BGACK
BR

HALT %

3 D: 4
U4 3A
M(C7405

RESET%

DTACK. PIT %

U24A

DTACK RAM %

DIACK ROM %

! 2
2 b

U4 3F
MCT405

131,>c,z

uis
LS93

IMHZ CLK

14

DTACK %

/
AR RN

AS *

BG #

(MCEBPODL4)

uze

15

CKA

P <
4 WHZCLK |

uUle
(BMHZ)

-3>CKB Q8B

=
[¢)

m]o P

[9]
=]
I
&

l

g°g|”a|

) 7S
_RESET* 18]
22

23

23

[VE Y-
LSi48

7
"

muocusLn-—8

AD
Al

FEE

A2

iz

-
%5

GS
£O

CR3 +5v

Ec
s]
~ -

1
U43D R35G
ATHR5 T 4TOP
8

s v

U43E
uC 7405

\ 19

O w

Voo oo

010 DD DI PID

CK

CLR

11

VPA %
 VMA %

DTACK % 1@

,_LD;‘L__
R/IW¥ 9

asx 6]
4 et

AS

CLK

HALT

2

R

" g3l

1 DTACK
,_um_g_m

DS

D@
D1

D2
D3
D4
DS
D6
D7

D8
D9
Di@
Dl
D12
013
Di4
DI5

Al
A2

P-4
[m]
X

(29 w21 A

X N2 A
31__AD3

Al4

v2ss
L500

2 $
J I

TSI

A3 57 ae

A 337a05

AN

AS 4306

A6 I35 AT

AT

Ag |36 A8

37 A9

. 3 AP

A 39 All

All T A

Az 3 A3

A3

Al4 42 Al4

43 AlS

NNNNNNNIN

AlS

44 Al
A [a5AT—)
Als e A8/
Al 4T A9 A
A&%—AZQ’_/
oy R EEVIN
azz | D1 _AZZ

az3| 2 A2l
28 FC

Eg?_zl_rg\)

Fcz (26 FCRY

w

‘=%

w
Hl
o

a lun

~ffele

[Nsfs]:

KN_AS%

AS

\ b

POR
1| MHZ CLK
EGACK
BR U26A
R32 +5v LSI93
— 1K
—AAA—— 45V R36D v K QA i
U42A 4709 ! QB
§R3I a5 5 U468 R36C ac
‘ 3 62K » MC3456 | R36B B 574 470¢ Qole
ey 3 TST" DTS — 4700 12 PR o 4 CLR
= tv +5V TMA——D QN L
— Ias 2] TRG s t 518 i
: ¢ R oP ck a U4sB
$mn~b%2|‘ CLR Lsu o,
ugsA 13 o/ 15
, L5690 NI
3 U45A
—_—ZD i3]z L, A
uz3b 12 ' 12 13
L5@8 i 13 o}
Vet i Esu 4 UleA U268
4 LSh o, === PR LS74 L5393
2l e 9 8 21y ald 13 T
5 s 7] — > CK QAT
3 -3 QB }——
cKk & 'S5y Qac 9
CLR an| 85—
) : RI3E UIBE CLR
A U320 R36A eI Lses 12
LS@4 4100 1")
9 ! - {>°
U23A
ey , L2
'J—\ 3
L/
U39
1388 U238 U298 +5v LSITS
s Lsio Vioa <].__1§’ LS26@) L4 15 G S e
4 }6 S R3?8 a3
—\ 6 4 3 ROMEN 3
X 3 a
uac 2], a :(‘a
— Lo i3 a 13
S ING© 91P Q%
Wad uzac cKk GF=NC
o, S T CLR
@\ 8 RAMEN == T 1
9 J t(DI }
{
? Uaee
U3 LS@4
L5138 H U33A
7o :::f , Loz
Yipo3 3 D'—
) Y2 DTE———OEl
A Y3 p— T5A U4sC
:24 B Ye D%—-o £2 Josy ,“33‘38 LS
c Y5 pg—o E3 | 2 5
o YopT—oE4 {>“f ‘Db_ o])8_
Y7Tp-—o0¢€S
J 2 U3IA U328
13, Lsert ; _L_s_Q‘_t_
i H ‘ 3
2 rl>°
@ 8
U338 u25¢C
LS@2 UaiB LSoP
s|e LS27 I - 12[9
24— g © X x
x * H e ote | nl x|« @ g
* 2 < x 4 < =z Hlo © &
" ~ 2 o (] 3 O - -
< [+ 4 > =} g]) a g
/ i N Z N 2 N\ \

ROMEN

uer-2

u27-3

uz27-13

uzs- 3

Uzs-13

U3e-3

U36-13

U3s5-3

1
2

UI8F

LS04
|2°<jls AS¥%

J

(2]

UiaB

12 l

C)

FC@

2

FC1)

13

FC2
N

u2sD
Lsoo
i3

1§ VPAIRQ %
e

AZ3

U188
£sg4

UITA
LS2@

4

4
2
|) 6 PIACK¥*
S

AQ!

AP2

DO}

(,'/
1

D@2

023

D4

DS

D@6

D27

D@8

DP9

e ey e

D1®

Dil

Di2

D13

vl

bl g

DI S

7l

AD2

AQB3

AD4

A@S

Ado

AQT

AZ8

5 No b 9
——[>°—————|3)a TIACKY

uITB

2, L5298

14

CCCCCCC(/(C(

A@9

AlD

All

Al2

Al3

ward

Al4

U3S-ie

O

R24
4T pasx

RASX

R22

AAA

CL

VWV

cu

B

RAW

TO SH3(H -18)
TO SH3(H -18)
TO SH3I(H-18)

TO SH3 (G-I
TO SH3(G-18)
TO SHAF-~18)
TO SH3(E-18)
TO S5H3(D-I18)
TO SH3(D-18)
TO SH3(D-iy

- JO SH3 (F-18)

- TO SH3 (E-®

TO SH3 (D -1&

TO SH3 (B-i8)

TO SH3 (B-1®
TO SH3 (B-18)
TO SH3 (B-18)

u3ab 2 £ FR su3 (D-18)

DTACK RAM %

N_VPA %

21

AN _LDS*

R/WX

N _UDS*

R2S
47

[o{Y)

R23

2 — ¢ 47
8 MA-

RAW

DIACK PiTx ER

DTACK ROM¥*

ACIHIRQ¥® N

UDS*

ACJIA CSI

AC2 JIRQ¥%

LDS®

TIACKY

PIACK%

PIRQ*

TOUT*

PITCS*

RESET*

R/WH*

AMHZICLK

8 MHZ CLK

)

N

FIGURE 8-3.

€3JW3NIB REV D SH 2 OF 3

MEX68KECB MC68000 Educational Computer Board Schematic Diagram
(Sheet 2 of 3)

8-15/8-16

SH3Y (B-18)

R SH3(D-1®)

= TO SH 3 (B-18)

FRSH 2 (H-4)
FRSH 2 (H-4)

FRSH 2 (H-4)

FRSH 2 (G-4)
FRSH 2 (G-4)

FR SH 2 (F-4)

FR SH 2 (G-4)

FR SH?2 (G-4)

FR SH 2 (E-4)

FR SH Z (G4)

FRSH2 (6-4)

FR SH 2 (D-9)

FR SH2 (6-4)

TO SH 3 (c-4)
TO SH 3((‘.‘4),

FR SH 2 (B-4)—

TO SH 3 (C-4)
FR SH 2 (C-4)
FR SH 2 (C-4)
FR SH 2 (D-4)
FR S5H 2 (D-4)

\ 16
N

/
POR %
ROMEN _
ua27
LS153
14—
U46-6 _ Zlg
U26-3 <Hdqe
U264 AZ8 g 1co _1s
// AGI 5licy . po
<}—-—-3 1ce (N4 AN
Ic3 Rz} |
ozo /Ams Ll per . 2|
DD) Y /AQZ H 2C1 2v AN
Da2 1 < 2ce
[0, 77~} - A 5 2¢C3
D34 - A <|»-——c 2
ws V. E
Dd6 A
a7 A
D08 A
D39 _
uze +5vV
g:? — LSIS3 | %
/) ar——]
RI3C
22 / 2 a 3 4700
q
DI4 - y <-qe |
DI) /A‘Q’ €lico R20 Z
AG3 f Ich 5 47 a
(<FHicz oy AN A
U26-5 3|,ca
/F&.& :é ZCI ZY -L—’V\.‘v
<HE& 2cz
uz6-1\ 1315¢3
AD1 - A 134 E2
ADZ A
Ad3 A
AP4 - /]
ADS A
AQP6 bl A RAD
ADT > N U3se RAL
ADS A LSIS3 RAZ
AGS A Xy RAD
A1® - / Zlg RAA
:u ﬁ <€ RAS
_Alg 6
A3 /\:'025 511Co R26 RAG o
Al4 \\ i Ll 47 N
< }-—L IC | AN
Uz6-16 3l\cs ros CL
3 :la :? 2C0 s a7
Az T 02T v |2
u26-9 i3] 22
=123
<}Fez
u39-i1 .
uU26-8 .
DTACK ROM % U3s
£ N :
LCIRO * N -
UDS * J z|h
ACTA CSI
AC2 TRQ ¥ 1 , <}Hde
LDS* _ A4 ©
TIACK * : T 51 :gﬂ" 3‘277
PIACK ¥ 4] 7
PIRQ* N < Iz Iy A RAW
TOUT * - J 0 RAS ¥
PITCS * N I 2Co 9 X [al1]
* N iz]2c! 2v[—Ne 3
RESET % 3] 2¢2 %o
R/W* N 1£]2¢€3 ojx
4 MHZ CLK A E2 Nix
8 MHZ CLK N ; g
DTACK PIT * N © 5
N
RAW
v
RAS %
NG 2L

13 N \ & N
AN X < %
un uID
MCMGBAGA MCMGBASE4
ad Sal.2_Dee SolLS _ Dee)
3 misr o 12223 4 DI (2. _Doi
475D 2 1\ _DI® 11 D22 A
7 vzz A RN e EER)
L5i1s D3=—= = D3 %
2 14 D12/ 14 Do4
D Q o IEMTE) PAME—505
B o520 A D5 /
5 7 Del-S Di4 P e D26
o are oI o5 ool 1 D87
121, atie o i
C—l -—l-!NC . ADI A [AQH 8 A
3 [») Q I—“BNC \-—-—:g% A Al —Amé ; Al
9 = li4 AD
ek @ HA 264 5] A2 Nz
CLR = 205 a1
T A2 3], (206 31)4
Sl S) I
209 23 209 23] -/ A A
N
Y2 (8 A 27 po
N2 e NALL 121,10
¢ 2184, RIZ_18 1 4
3 A3 2 \AB 215, s U9
UISA E £ % o " MCe8229 4
Ls21 [4
SO 20 20 o] 45 8? iﬁ‘.” =
, gg %102 Paz S
o — R -
) 5645 Dg5 > 85 PAS 'i%—-
{>° oo tlpe pac Hi—
——-—;‘07 PAT7 '-IS—‘
N_A® Z RSt M —
58 |
el e
Usa usa us2 ust us® uas vae va7 —Apa NS H3 1%
MCMA1IE MCMALIE MCM4IIE MCM4AIlI6 MCM4116 MCMAIie MCMA41I6 MCMA!16 T AGS 3 %g Ha |
s aMHzCLK 40| gg? =
= A AQ AQ AD AQ AD AD AR R/W % 43 RIW P2 19
&1 A Al Al At Al Al Al Al Jie 'RESET* _39|2cits 00F [28
2] AZ A2 Az A2 A2 AZ A2 A2 N [PB4 12}
=1 A3 A3 A3 A3 A3 A3 A3 AS €7 PRS 122
o] A4 A4 A4 A4 A4 vy A4 A4 Ppo 122
3] AS AS AS AS AS AS AS AS pe7 |24
3 26 ﬁé o) S) ib AD DTACK PIT% |42 BTACK PCa E
W W) W W w w w PITCS* 41 i7g el |20
=4
751 RA RAS g @ RS RS a5 7) ’ YL kY
B ZA% CA 3 (3 [A3 Pe3/ToUT 22
Pca / OMARED |22
DI DOIDI DO|DI ©DO|DI ©DOfOI ©o/OI ©DOJ/DI ©DO[DI ©O pce /PRG35
/PIRQ P
2 [a 2z [alz lia]z [alz [afz [alz |alz |a N PC6/ PIACK
~ I § g 0 0 n ~ o - - 5 1277)
8 PC7/TIACK 2~
s| 8 5| 88 88 8§ 83§ 3 8§ N
ue2 ue! ued Us9 us8 us7 us6 uss
MCM4116 MCM4116 MCM4i16 MCMAII6 MCMAII6 MCM41I6 MCMAII6 MCM4LI6
5 NG
7] AD AD AD Ap A AD AD A . AN
S Al Al Al Al Al Al Al Al RS
2] A2 A2 az Az A2 Az AZ A2
A3 A3 A3 A3 A3 A3 A3 A3 + 8V —AW
) A4l A4 Ad A4 A4 AL A4 A4
3] AS AS AS AS AS AS AS AS N
1% A6 AB A6 26 A AB A6 Q 'y ﬁf};m .
—alE & w5, |®m o |®m |® |mL |E, S
=1 R&S RAS RAS LTY) RS RAS RAS RAS v cre
RS o) CAS for S TAS TAS <Y L AP0
L
DI ©0O|{DI ©DO{DI OO|DI DO|DI DO|DI ©DO/DI DofDI DO g $
2 14 2z 4 |2 4 |z 14 2 14 {2 14 |2 a2 14 $ 4700
" w e 4 m N Nl = =l & 8 § § 8 g 8
sl o a o & o o ¢ 5 8 a o 8 B8 y *
; &
b4
‘ 2
s . B .\7
~ AN

4 "\
u3sp PART OF + 5Y
12 532 Ji
3] DU eoa [] ' rice
usa 3° 4700
g L522 ;
us) {1 \2 PD! a7 ACITRQ#*
W=D
5 k532 ([5o5
a N6 PD2 |.g _ D@
u2c _Di |
0 5% \ D'z
8 PD3 _Di3
U2D 1 33 (Dia
12 232 _DIS
N N AB!
13 L Gon Po4 13, N ADE
3 ACIA CST
z =% 3 PD5 “ oS ¥
_.PD5 | €
uze I 29 7
532 l E [RIWX
U9 4 & Uic Poe 27
MCeB23g 53
a7 PAG}S 2 8 PD7
45 o1 P 5 VIT:) [{r.] 25
T Al RS
<5102 PAZ 532
7 5
25102 PA3 | & DATA STROBE*,,
pa Paa (2 4 UIA
B il =
3 o7 pa7 LU 2 3 INPUT PRIME * : 2
%R‘.’:I Hp2 ACKNOWLEDGE %/, B
$HRrs2 H2 B2
—£1lirs3 H3 FAULT x
_.Eé..w 16 S
—234psg s
X 40 PBO | SELECT 2
K48cik Pei [0 PAPEROUT _|o% s R38
—35|R/W PB2 o Busy 15 \\5 S I5M
—=|RESET pe3 (& 7 s
PBs 32 15 N
e PBS 155 13
Poy [24 N
HAZIPTACK pea |22 T 73 s S —
AUEs 31 4700 47 P2
N Ers o W +SV pART OF +EV ———an
PCz/ TINISS—To5Tw c3 7
oumren 24 ! DATA OUT 22
PC4 /DMAREQ e
PC5 /PIRG 12 - PXRAN N :
gg%"r,::g: 37 TIACK % RID Js 45V
N 120K 7
o 1423
RIGE
o 4700
J | 20 +5v AC2IRQ ¥
NG (_Doo
N vae N_Da1
5 R8 _D®2
) 1K NC 322 Uaa NTE
v VAA 4+ 2 6 MC33¢Z RIt N 4
4 - ' 2200 D25
4+ CRI = ——— A +5V N_026
X \Noia 71 (oe?
N ABI
CR2 R6 _ AD6
¥ \NSia _T Sop ACIA CS)
LDS *
TIGK ra c4 €
18K . d R/W *
ol 1¢ DATA IN | [,
s L/
a7k
7

PART OF

F
» J3
u13 I3
4 MCE853 TX DATA s
TRQ u7c
gf o0 MC1488
6
D1 TXD . e
20 2 \, RX DATA s
1% Bl e ol <
5|04 e = I = MCi488
(] 23 J8 S
5|2 XD 2] e 12 ;
15157 Ry 12] 13 NC
T
ueD
Ble MC1489A
cse
12 csi
14
ralsa
3] E
R/W
-1z2v
TO
TERMINAL
°
R168 MCHIA;‘A»ll' 96059 e La00 l;us%
23 2 =
NS Y ey R iy D) S S o5
13 ' 512 2800] 3 "
2 2 leg 3$ﬁo3J4
1 v Fy [40e] | S sy
R Oisaze fa [5 600 7}%7; 2 M +5v
MHZ 7 300 19l@9
Fﬁ: S\ Mg uBsB lEJsecm
£12 6%is0 L5ep =
£l12 _L ¢|3Ll_4°|3 14 4 6 9 8 oCco 15
20 13 13710 , [|
RI66G %o Fla _Qm .»v
4700 @ Fi5 HE 1516 15 16
——'-MNG——WFIG —'—?m
USA PART OF
MC 1488 J4
2 3 RTS []
€
20 viz
MCE85¢ usc |
- MC 1488
——1TRQ 0
22
21 gtlb 0 6 s)5 TX DATA 3
22] RxD |2 UoB TO
19105 RIS [5 NCI4B9A MODE M
18 cTs 124 (HOST)
N D4 CTS 23 6 4 RX DATA S
6 D5 5@'——‘{4 > 1
508 TXC 3 5 RI2D
— D7 RXC jL——————jé 1K
— s -12v
"__"_LCSQ ~ 5 }
) RIGC
CX =) oS | Juciase
__._._.._.__'_4_5 +5V—‘VW—'| 7 5 (3 DTR a
— Biocw
RIW
UGA
MC1489A
3/ I cTs 9
2 RIZA
3. ¥
z V-

©3JW3iIiB REV D SH30F3

FIGURE 8-3. MEX68KECB MC68000 Educational Computer Board Schematic Diagram
(Sheet 3 of 3)

8-17/8-18

APPENDIX A

S-RECORD OUTPUT FORMAT

The S-record format for output modules was devised for the purpose of encoding
programs or data files in a printable format for transportation between computer
systems. The transportation process can thus be visually monitored and the
S-records can be more easily edited.

S=RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of
several fields which identify the record type, record length, memory address,
code/data, and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first character representing the high-order 4 bits, and
the second the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

type record length address code/data checksum

where the fields are composed as follows:

PRINTABLE
FIELD CHARACTERS CONTENTS

type 2 S-record type -— S0, S1, etc.

record length 2 The count of the character pairs in the record,
excluding the type and record length.

address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.

code/data 0-2n From 0 to n bytes of executable code, memory-
loadable data, or descriptive information. For
compatibility with teletypewriters, some programs
may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

checksum 2 The least significant byte of the one's complement

of the sum of the values represented by the pairs
of characters making up the record length, address,
and the code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may
have an initial field to accommodate other data such as line numbers generated
by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

A~1

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of
the encoding, transportation, and decoding functions. The various Motorola
upload, download, and other record transportation control programs, as well as
cross assemblers, linkers, and other file-creating or debugging programs,
utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program,
the user's manual for that program must be consulted. TUTOR, the firmware
supplied with the educational computer, supports S0, S1, S2, s8, and S9 records.
The S? and S8 records are not often used however because all of the on-board RAM
and ROM can be addressed with a 2-byte address.

An S-record-format module may contain S-records of the following types:

S0 The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of
S-records. Under VERSAdos, the resident linker's IDENT command can be
used to designate module name, version number, revision number, and
description information which will make up the header record. The
address field is normally zeroes.

S1 A record containing code/data and the 2-byte address at which the
code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records transmitted in
a particular block. This count appears in the address field. There is

no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of Sl records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. Under VERSAdos, the resident linker's ENTRY
command can be used to specify this address. If not specified, the
first entry point specification encountered in the object module input
will be used. There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Normally, only one header record is used, although it is possible for
multiple header records to occur.

CREATION OF S—RECORDS

S-record-format programs may be produced by several dump utilities, debuggers,
VERSAdos' resident linkage editor, or several cross assemblers or cross linkers.
On EXORmacs, the Build Load Module (MBIM) utility allows an executable load
module to be built from S-records, and has a counterpart utility in BUILDS,
which allows an S-record file to be created from a load module.

Several programs are available for downloading a file in S-record format from a
host system to an 8-bit microprocessor-based or a 16-bit microprocessor-based
system. Programs are also available for uploading an S-record file to or from
an EXORmacs system.

EXAMPLE

Shown below is a typical S-record-format module, as printed or displayed:
S00600004844521B
S1130000285F245F2212226A000424290008237C2A
$11300100002000800082629001853812341001813
S$113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The module consists of one SO record, four S1 records, and an S9 record.

The SO record is comprised of the following character pairs:

S0 S-record type S0, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or
ASCII bytes) follow.

gg Four-character 2-byte address field, zeroes in this example.
48

44 ASCII H, D, and R - "HDR".

52

1B The checksum.

The first S1 record is explained as follows:

Sl S-record type S1, indicating that it is a code/data record to be
loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

00 Four—character 2-byte address field; hexadecimal address 0000, where
00 the data which follows is to be loaded.

A~3

The next 16 character pairs of the first Sl record are the ASCII bytes of the
In this assembly language example, the hexadecimal

actual program code/data.

opcodes of the program are written in sequence in the code/data fields of the Sl

records:
OPCODE INSTRUCTION
285F MOVE.L (A7)+,A4
245F MOVE. L (A7)+,A2
2212 MOVE.L (A2) ,D1
226A0004 MOVE.L 4(A2) ,Al
24290008 MOVE.L FUNCTION(Al) ,D2
237C MOVE.L #FORCEFUNC,FUNCTION (A1)
. (The balance of this code is continued in the
. code/data fields of the remaining S1 records,
. and stored in memory location 0010, etc.)

2A The checksum of the first S1 record.

The second and third Sl records each also contain $13 (19) character pairs and
are ended with checksums 13 and 52, respectively.
07 character pairs and has a checksum of 92.

The S9 record is explained as follows:

S9 S-record type S9, indicating that it is a termination record.

The fourth S1 record contains

03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow.

00
00

The address field, zeroes.

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this
example) representation of the binary bits which are actually transmitted.
example, the first Sl record above is sent as:

For

type length

address

code/data

checksum

0101 001l |ooll |0001 (0011 |00OO1 |OO1L

0011

00kl

0000

0011

0000 |0011

0000

0011

0000

0011

0010

0011

1000 |0011

o101

0100

0110

+as {0011

0010

0100

gool

A4

APPENDIX B

OPERATION WITH MECHANICAL AND LOW SPEED TERMINALS

Difficulties may be encountered when the MEX68KECB is tied to a mechanical
terminal at Port 1. Mechanical terminals are inherently slower than CRT
terminals when performing certain functions such as a carriage return because of
the physical movement required. The paper printout used with mechanical
terminals also presents problems which are not encountered with a CRT terminal.
These problems are discussed in this appendix.

INITIALIZATION SEQUENCE FOR MECHANICAL TERMINALS

When a mechanical terminal is interfaced to the educational computer, an added
initialization sequence is required. Using the Port Format command for Port 1
(PF1), the user must change the number of null characters sent after each
character and/or after each line. Without the correct number of nulls, the
TUTOR prompt may or may not be displayed; in some cases, only the last part of
the prompt will be displayed. Other transmissions from the educational computer
may also be garbled. Mechanical terminals need to receive a number of null
characters after each carriage return/line feed and, in some cases, after each
character to allow their mechanism to catch up; that is, a carriage return/line
feed (CR/LF) sequence requires more time than two printable characters, and the
additional nulls fill in the extra time. Without the nulls, part of the message
(or prompt) is lost during the CR/LF sequence,

At lower baud rates, mechanical terminals usually require nulls only after a
CR/LF and not after each character. For example, a TI 700 Series terminal
requires only CR/LF nulls at 110, 150, and 300 baud (refer to Table B-1). When
only CR/LF nulls are required, characters are missed at the beginning of each
line but the rest of the line is received correctly. At higher baud rates where
nulls are required after each character, all characters are unrecognizable until
the nulls have been added. The entire line will be garbled without the nulls.

Although received lines can be garbled, the lines transmitted by the terminal do
not require nulls and are not garbled. The Port Format command should be used
to specify the number of null characters required. All user entries under the
PF command (paragraph 3.5.21), including carriage returns, should be entered,
regardless of how much of the educational computer's response is received; in
some cases, the response may be unintelligible until all parameters have been
entered, Table B-1 lists the number of nulls required by a TI 700 series
terminal at various baud rates. The number of nulls required by other terminals
must be determined by the user.

After all parameters have been entered, several carriage returns or a character
followed by a carriage return will be required before the prompt is displayed on
terminals which require nulls after each character. Terminals which require
only CR/LF nulls should display the prompt as soon as the PF command is
complete,

B-1

NOTE

A reset changes the Port Format parameters back to their
initial wvalues. The user must go through the above
initialization sequence any time the RESET button is
pushed or after a power-on reset.

TABLE B-1. TI 700 Series Null Requirements

BAUD RATE CHARACTER NULLS CR/LF NULLS

110 0 1
150 0 1
300 0 4
1200 3 17
2400 7 2F

PAPER PRINTOUT FOR MECHANICAL TERMINALS

Mechanical terminals suffer from a second difficulty, which is caused by the
paper printout. CRT terminals allow erasures and overwrites, whereas paper-—
listing terminals do not.

The educational computer assembler/disassembler wutilizes the overwrite
capability of CRT terminals when inputting source lines. Under the Memory
Modify command with the disassemble option, bytes in memory are read and the
disassembled source line is displayed. The user may enter a new source line,
which will result in the original address, object code, and source code being
erased and replaced by the new address, object code, and source code. On a
paper-type terminal, no erasure is possible; the two lines are written on top of
each other and neither is legible.

The same problem occurs at the printer when it is attached. When using a CRT
terminal, erasure and overwrite produce a current assembly listing where old
source lines are not interspersed with new lines. To get a readable listing
using a paper-listing terminal, make all changes and then use the Memory Display
command with the disassemble option to produce the listing.

If an error is made when entering a source line using a paper-type terminal, the
error indicator, which appears under the field suspected of causing the error,
is of little use because the fields of the source line are illegible. This
problem can be overcome by forcing the ECB to generate an auto line feed each
time a carriage return is entered so that it will not overwrite. The third byte
of the 6-byte OPTIONS variable is the auto line feed/no auto line feed flag
(refer to paragraph 3.5.21). This byte is initialized to $00, indicating no
auto line feed. To force the auto line feed mode, this byte should be set to a
non-zero value. The old source line, new source line, and error indicator will
now all be legible.

B-2

Any utilities supported by a host which use erasures or other screen control
commands will cause the same type of problem when the educational computer is
operated in the transparent mode.

TERMINAL BAUD RATES

The educational computer will operate at baud rates which range from 110 to
9600. A major source of problems is selecting a baud rate for Port 1 or Port 2
which is not the same as the baud rate of the terminal or host which is
connected to the port. The baud rate selected on the educational computer must
match the baud rate of the terminal or host connected to the educational
computer. However, the baud rate of the terminal and of the host do not need to
be the same except when the board is operated in the transparent mode.

When the educational computer is operated in the transparent mode, the terminal
port (Port 1) and the host port (Port 2) are tied together. The educational
computer is effectivly bypassed. Its only function in the transparent mode is
to monitor the information sent by the terminal for the exit character. 1In the
transparent mode, the terminal and host baud rates must be identical.

When using the educational computer in the trace mode or with breakpoints, at
relatively low baud rates, it may be desirable to suppress the register display.
The fourth byte of the OPTIONS variable (paragraph 3.5.21) determines whether or
not the registers will be displayed. This byte is initialized to $00,
indicating that the registers will be displayed. If this byte is set to a
non-zero value, the registers will not be displayed after each instruction is
traced or when a breakpoint is encountered. The registers can be examined,
however, with the DF command. The register display flag is set to zero by
RESET.

Example:

TUTOR 1.X > T
PHYSICAL ADDRESS=00001000

PC=00001004 SR=2700=.S7..... US=FFFFFFFF SS=00000786
DO=00306D4D D1=00000000 D2=00000000 D3=00000000
D4=00306D4D D5=0000002C D6=00000002 D7=00000000
A0=00010040 Al=00000618 A2=000004B8 A3=00000540
A4=00001006 A5=00000540 A6=00000541 A7=00000786

001004 6D1C BLT.S $001022
TUTOR 1.X :> MM 4E9 Set non—zero register display
0004E9 00 2F0. flag.

TUTOR 1.X > T
PHYSICAL ADDRESS=00001004
001006 0C000039 CMP.B #57,D0

TUTOR 1.X >

B-3/B-4

APPENDIX C

RS-232C SERIAL COMMUNICATIONS

E.I.A. RS-232C STANDARD

Written in 1969 by the Electronic Industries Association (EIA), RS-232C is a
serial communications standard established to define electrical and mechanical
requirements for interconnecting data communications equipment (DCE) and data
terminal equipment (DTE). The standard describes both synchronous and
asynchronous serial binary communications with data rates ranging from zero to
20,000 bits/second. Twenty-five signal lines are described by the standard,
although most are not used in typical applications. Table C-1 summarizes key
features of the E.I.A. RS-232C standard.

PARAMETER RS-232C

Line length (recommended maximum - may be exceeded 50 ft.

with proper design.)

Input 2 3k to 7k ohm
2500 pF

Maximum frequency (baud) 20k baud

Transition time (time in undefined area between "1" and 4% of bit period

"0") tr = 10 to 90% or 1 ms

dv/dt (wave shaping) 30 V/us

Mark (Data "1") -3V

Space (Data "0Q") +3 V

Common mode voltage (for balanced receiver) -

Output 2 -
Open-circuit 3 V< Vol <25V
output voltage (Vy)
V¢ = loaded Vg, 5 < Vol <15V
3k to 7k ohm load
Short circuit current 500 mA
Power-off leakage > 300 ohm
(Vo applied to unpowered device) 2 V< [Vl <25V
Vo applied
Minimum receiver input for proper V, >+ 3V

The standard connector used for RS-232C compatible equipment is a 25-signal
subminiature "D" type. Table C-2 lists the pin number, signal name, and signal
description.

TABLE C-2. RS-232C Signal Description

RS-232C RS~232C
PIN NUMBER SIGNAL NAME DESCRIPTION AND SIGNAL DIRECTION
1l AA Frame ground
2 BA Transmitted data (to DCE)
3 BB Received data (from DCE)
4 CA Request to send (to DCE)
5 CB Clear to send (from DCE)
6 CC Data set ready (from DCE)
7 AB Signal ground
8 CF Received line signal detector (from DCE)
9 - Positive DC test voltage
10 - Negative DC test voltage
11 - Unassigned
12 SCF Secondary received line signal detector (from DCE)
13 SCB Secondary clear to send (from DCE)
14 SBA Secondary transmitted data (to DCE)
15 DB Transmitter signal element timing (from DCE)
16 SBB Secondary received data (from DCE)
17 DD Receiver signal element timing (£rom DCE)
18 — Unassigned
19 SCA Secondary request to send (to DCE)
20 6D Data terminal ready (to DCE)
21 6.¢] Signal quality detector (from DCE)
22 CE Ring indicator (from DCE)
23 CH/CI Data rate selector (to/from DCE)
24 DA Transmitter signal element timing (to DCE)
25 - Unassigned

MEX68KECB RS—-232C INTERFACE

Ports 1 and 2 of the MC68000 Educational Computer Board support asynchronous
serial communications as described by the RS-232C standard. Because transmit
and receive clocks are not sent out on the interface, synchronous communications
are not supported. Port 1 constitutes a DCE or modem interface type; that is,
data terminal equipment is connected to Port 1. Port 2 is a DIE interface and
connects to data communication equipment. Baud rates at each port range from
110 to 9600 baud.

Of the 25 signal lines described in Table C-2, the educational computer supports
a set of seven., These are:

BA - Transmitted data - TXDATA
BB - Received data - RxDATA
CA - Request to send - RTS

CB - Clear to send - CTS

CC - Data set ready - DSR
CF - Received line signal detector - DCD
CD - Data terminal ready - DTR

In addition, there are two ground signals:

AB - Signal ground - GND

AA - Frame ground
The frame ground is not connected to the educational computer's signal ground,
but can be connected externally if necessary. Tables 8-3 and 8-4 list the pin
number, signal mnemonic, and signal description for Port 1 connector J3 and Port
2 connector J4, respectively.

The following paragraphs are a description of the signal lines supported by
Ports 1 and 2., The format used is:

Signal name
Signal direction
Signal function description
1. TxDATA Transmitted data
Serial data output from terminal (DTE) to modem (DCE)
The line/signal through which the terminal (DTE) sends data to the modem
(DCE)
2. RxDATA Received data
Serial data input to terminal (DTE) from modem (DCE)

The line/signal through which the modem (DCE) sends data to the
terminal (DTE).

RTS Request to send
Control output from terminal (DTE) to modem (DCE).

The line/signal through which the terminal (DTE) requests permission to
transmit data to the modem (DCE).

Assertion of RTS instructs the DCE to prepare to receive data from the DTE
and to signify that it is ready to receive by asserting CTS. However, RTS
is not monitored at Port 1; it is assumed that Port 1 is always ready to
receive data. CTS is activated any time the terminal (DTE) asserts DTR
indicating that it is ready to transmit or receive data.

At Port 2 RTS is asserted upon power up to prepare DCE connected to Port 2
for data reception.

CTS Clear -to send
Control input to terminal (DTE) from modem (DCE).

The line/signal through which the modem (DCE) acknowledges the acceptance of
a terminal (DTE) request to send data.

As stated above, Port 1 asserts CTS any time an active level is received
from the DTE on DTR.

Port 2 receives CTS from the DCE connected to Port 2 and will interrupt data
transmission when inactive,

DSR Data set ready
Control input to terminal (DTE) from modem (DCE).

The line/signal through which the modem (DCE) indicates its on-line,
in-service, or active status.

Port 1 activates DSR whenever an active level is received on DTR. Port 1 is
always on—-line.

Port 2 uses only the CTS input from the DCE to indicate whether data may be
sent. DSR is not used in making the decision.

DTR Data terminal ready
Control output from terminal (DTE) to modem (DCE).

The line/signal through which the terminal (DTE) indicates its on-line,
in-service or active status.

DIR is used by Port 1 to enable and disable the transmission of data via the
CTS input of the Port 1 ACIA -- MC6850. When CTS is driven high, trans-
mission will stop following the completion of any in-process transmission.
Port 2 activates DTR as part of the power-up/reset firmware. A write to the
ACIA control register which causes the RTS output to go low will activate
DTR at Port 2.

Cc-4

7. DCD Signal Detect
Control input to terminal (DTE) from modem (DCE).

The line/signal through which the modem (DCE) indicates that the
communication channel to which the modem (DCE) interfaces (the other/non-
terminal side of the modem) is in an acceptable active state. This signal
has meaning only in a communication channel (i.e., telephone line) context.
DCD is off when no signal is being received or when the received signal is
unsuitable for demodulation. While Port 1 implements a DCE or modem
interface, the communications is exclusively digital. There is no need to
test the suitability of the signal. DCD, at Port 1, indicates only that DIR
has been received from the DIE.

Port 2 does not monitor DCD. Again, all signals are exclusively digital.

MEX68KECB NON-COMPLIANCE WITH RS-232C

In addition to being a functional subset of the full RS-232C standard, the
educational computer does not comply strictly to the signal specifications. In
addition to signal definition and timing, the RS-232C standard specifies driver,
receiver, and interface voltage and impedance levels (refer to Table C-1). The
MC6850 ACIA's used in the serial interface are NMOS devices operating with a +5V
supply and cannot meet the interface voltage and impedance requirements. 1Two
linear integrated circuits, the MC1488 RS-232C line driver and the MC1489A
RS-232C line receiver, provide the required buffering and drive to meet the
specifications.

The maximum rate of voltage change is specified as 30 V/us in the RS-232C
standard. The MC1488 line drivers have an inherent slew rate which is much too
fast. The current limited output of the device can be used to control this slew
rate by connecting a capacitor to each driver output. The required capacitance
value is given by the formula:

T
C = IOS X _iT
where C is the capacitance in picofarads, I,g is the output short-circuit
current in microamps, and AT/ AV is 1/slew rate in microseconds per volt. A
330 pF capacitor on each output of the MC1488 will guarantee a worst case slew
rate of 30 V/us. Bear in mind, however, that this capacitance includes cabling
capacitance.

These capacitors are not present on the educational computer board.

C-5/C-6

SUGGESTION/PROBLEM microMszems
REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop_________ Phone
City State Zip
For Additional Motorola Publications Microsystems Field Service Support
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 829-3100

Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

M MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ¢ PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

15196-5 PRINTED IN USA (12/83) MPS 7M

