Minix Runs on the PT68K-2

About a year ago, I purchased a PT68K -2 from
Peripheral Technology in Marietta, Georgia. [
had been looking for a 68000-based microcom-
puter for some time, and they had come up with
one that took advantage of the PC/XT clone
components that were widely available. The
PT68K-2 is a 68000 board that fits a PC/XT
cabinet and has slots for IBM-compatible 1/O
ards. Ithas serial dafl
disk controller, but lacks an MMU or a DMA
controller. I ordered one with a megabyte of
RAM, an IBM clone keyboard, and an IBM
clone monochrome display card.

My PT68K-2 came with the ‘Humbug’ ROM
‘monitor and the ‘SK*DOS/68K" operating sys-
tem, from StarK Software Systems. SK*DOS
looks like FLEX9, which was familiar to me
because I ran it on my 6809 machine. Although
SK*DOS is a fine system for many purposes, I
was looking for something better. I wanted a
unix-like operating system with a hierarchical
file system, 1t i il

semantics. I had also grown a bit weary of
system programming in assembler language.
My search led me to consider Minix. The fol-
lowing information is an excerpt from the
*Minix Information Sheet’, recently posted to

comp.0s.minix on USENET.
WHAT IS MINIX?
MINIX is tem that s a subset of

By:
1. Gary Mills
1019 Weatherdon Ave.
Winnipeg, Manitoba, Canada R3M 2B5

on USENET. None of the utilities contain any
ATA&T code cither. The shell, the C compiler,
make, etc. have all been completely redone. As
a result, this code is not covered by the ATT
UNIX license, and it can be made available.

‘What CPUs does Minix run on?

MINIX was originally written for the [BM PC,
XT, and AT. It has since been ported to the NS
16032 and the 68000 (Atari ST). It will also
work on many 386-based machines.

How can I get Minix?

MINIX is being sold by: Prentice-Hall, Engle-
wood Cliffs, NJ 07632 (1-800-223-1360), and
Prentice-Hall Int'l, Hemel, Hempstead, Eng-
land (+44 442 231555)

When ordering it, please specify one of the
following versions:

MINIX for 640K IBM PC $79.95

MINIX for 512K IBM PC/AT $79.95 (0-13-
583865-7)

MINIX sources on mag tape $79.95

MINIX code + reference manual (PC) $110 (0
13-584426.6)

MINIX code + reference manual (AT) $110
MINIX for the Atari ST $79.95 (0-13-584392-

8)
Textbook: Operating Systems: Design and
Implementation (0-13-637406-9)

UNIX Version 7. It contains nearly all the V7
system calls, and these calls are identical to the
corresponding V7 calls. It also includes a
Boumne-compatible shell, and close to 100 util-
ity programs, including cc, grep, ls, make, etc.
o the average user, it is effectively V7 UNIX.
If you dig deep enough, you will, however, find
some differences.

The MINIX kemnel has been written from
scratch by Dr. Andrew Tanenbaum
<ast@cs.vunl>. It does not contain ANY
AT&T code at all. The utility programs have
been written by Andy Tanenbaum, his students,
and a number of other people, including people

X for the IBM PC, XT,
and AT (0-13-584400-2) *

How Can I Find Our More About
Minix?

MINIX is described in detail in the following
book:

Title:Operating Systems: Design and Implem-
entation

Author: Andrew S. Tanenbaum
Publisher:Prentice-Hall

ISBN: 0-13-63740

A German translation was begun in Feb. 1988.
There is also a paperback MINIX Reference
Manual that is a subset of the book. It contains
only the MINIX specific information, not the
general background stuff on operating systems
that the book contains The software package
does not contain a manual; this is contained in
the appendices to the book, which also contain a
complete source code listing (in C) of the
MINIX kernel.

Is Minix Public Domain?

No. MINIX has been copyrighted by Prentice-
Hall. Prentice-Hall has decided to permit a lim-
ited amount of copying of the sources and bina-
ries for educational use. Professors may make
copies for students in their operating systems
classes. Academic researchers may use it for
their new experimental machines, and things
like that. A small amount of private copying of
diskettes for the use of personal friends is ok, but
please do not make more than 3 copies from
each original. Prentice-Hall is trying to be more
Teasonable than most software publishers.
Please do not abuse this. Online repositories of
the full source code distribution are not permit-
ted. All commercial uses of MINIX require
written permission from Prentice-Hall; for the
most part, they are willing to grant such permis-
sion in return for a royalty on sales.

‘What Comes With Minix?

Minix includes the complete kemel source and
binari th
compiler and linker are also included. The fol-
lowing programs come with the Atari ST ver-
sion:

chmod chown clr cmp comm compress cp cpdir
date dd df diff diskcheck du echo expr factor
false find fix fsck getlf grep gres head kill In
login Ipr Is make megartc mined mkdir mkfs
mknod more mount mv od passwd pr printenv
pwd readall readfs rev rm rmdir roff sed sh shar

nc tail tar

)
0-13-637331-3 (Paperback, outside of U.S
and Canada)

tee test time tos touch tr treecmp true umount
uniq update uudecode uuencode we

20

June/July ‘89

68 Micro Joumal

ADAPTATION TO THE PT68K-2

The Atari ST has the same 68000 cpu as the
PT68K-2, 50 that version of Minix made a good
starting point. However, the peripheral devices
are almost entirely different. I borrowed an Atari
ST and set to work, doing all the development
under Minix, using the Minix compiler. All the
kernel source files that were specific o the Atari
ST, most of which were device drivers, had file
names beginning with ‘st’, The first task was to
‘modify these files to suit the peripheral devices
on the PT68K-2, creating an equivalent set of
files beginning with ‘pt’. This took about a
‘monthof evenings and weckends, and was made
: 5 o

ly
Generally, only a small portion of each file
needed to be modified. Once that was done, it
only remained to build a kernel image and to
create a boot disk for the PT68K-2. Iwon't claim
that Minix booted on the PT68K -2 the frst time,
but it did boot and run the second time, after
minor changes. The following section describes

that were required to create a version of Minix
that would run on the PT68K 2.

Interrupt Handling

Onthe Atari, interrupts may be generated by the
clock timer, the DMA device, the keyboard
ACIA, or the parallel port. Interrupts from hard-
ware are handled by a 68901 multi-function
peripheral, which priorizes them and supplies a
vector number to the cpu that invokes one of the
first sixteen user vectors. Assembler code in the
file *stmpx.s’ handles the vectored interrupts
and calls interrupt service routines in various
device drivers. The PT68K-2 has a more primi-

Minix scheduler and real time clock. Only

inor chang
routines to the PT68K-2. A3.6864 MHz clockis
available to the first 68681 DUART, so that
clock is divided by a counter programmed to
produce interrupts directly at 60 Hz. No soft-
ware division is required, resulting in a more
efficient kemel. The timer in the 68230 PIT
would have been a better choice, but it has no
connection to the clock, and no interrupt line.
Simple hardware modifications could remedy
this. The interrupt should likely be at a higher
priority than the keyboard interrupt.

The Keyboard

Changes to the keyboard driver were mainly a
result of differences in the keyboard interface
because both the Atari keyboard and the IBM
clone keyboard transmit the same scan codes.
The Atari ST uses a 6850 ACIA whereas the
PT68K-2 uses a TTL keyboard register. The
PT68K-2 keyboard register interrupts via an
input line on the first DUART. Obtaining the

The DMA Device

The Atari ST uses a DMA device for access to
the floppy disk and the hard disk, managed by
routines in the file *stdma.c’. The PT68K-2 has
10 DMA, 50 that data transfers to and from the
disks must be done by cpu action. This is a basic
limitation of the PT68K-2. The DMA routines
are omitied from the PT68K-2 version of Minix,
requiring corresponding changes in the floppy
disk driver.

The Floppy Disk Driver

The Atari STuses a Wester Digital 1772 floppy
disk controller, accessed viathe DMA device. In
the file *stfloppy.c”, the driver starts cach floppy
T/O operation by issuing a command to the
controller. All operations interrupt on comple-
tion, so the interrupt service routine checks the
result of the operation and takes appropriate
action. The DMA device does the data transfers
for sector read and write operations, also inter-
rupting on completion. The floppy driver re-

the byte, followed by a read from a second
address to reset the register. The IBM keyboard
has built-in key repeat, so the software repeat
routine in the Atari version is no longer needed.
The file *stkbd.c’ also contained support for
Atari national keyboards. This was deleted as
well.

The Display

The Atari ST display is quite different from the
IBM PC clone display card used in the PT68K-
2. The Atari has a video controller device that
uses 16 K of system RAM for a bit map of the

using th 000-f
ily interface. Interrupts may be gencrated by the
clock timer, the IBM keyboard, or the parallel
printer port. Al interrupis from hardware are
wired to IRQS, invoking the level five auto-
vector. For the PT68K-2, the file ‘ptmpx.s’
handles the one hardware interrupt and must
poll status registers in various devices to deter-
mine which interrupt service routine to call.
‘This file also reserves storage for ‘shadow cop-
ies” of some registers in the peripheral devices.
‘The reason for this is some multi-part devices,
like the DUART or the PIT, have write-only
registers that are shared between parts. Keeping
shadow copies allows drivers for each part to be
separate and not interfere with each other.

The Clock Timer

The Atari ST has a 2.4576 MHz clock which is
dividedby aprogrammable counter in the 68901
MFP i Thei i

routine in ‘clock.c" does a further division by
four to produce the 60 Hz clock tick used by the

screen. The driver from font
tables to form characters on the screen. On the
PT68K-2, the video RAM and controller are on
the display card. Each display position on the
screen has a character byle and an attribute byte
in video RAM. For the PT68K-2, the driver
initializes the video controller registers to start
the display with a blank screen. It does scrolling
simply by copying bytes in video RAM, and
does cursor movement by changing the cuirsor
location registers in the controller. The font
tables and associated code, of course, had to be
deleted, but all the support for ANSI escape
sequences was retained with only minor
changes. The display driver also is responsible
for the ‘bell’ tone, and on the Atari, it uses the
sound device to generate the tone. On the
PT68K-2, sound is produced by enabling and
disabling an output from the first DUART that
drives the speaker. Unfortunately, the timer in
the DUART has to run at 60 Hz 1o serve as the
system clock, but no other timer was available.

quired for the
PT68K-2version because, although the PT68K-
2also uses the WD 1772 FDC, it has no DMA,
and the interrupt line is not connected. During
sector /O operations, the data transfer rate s too
high to allow the cpu activity to be interrupted
by other devices. It is therefore necessary to
. 3 oo

interrupts are lost during sector /O, affecting
mainly the clock, but potentially also the key-
board and parallel port. The structure of the
driver had to be revised to poll the FDC and wait
for completion of each operation. Interrupts are
enabled at this point, so other system activity
can continue while the floppy driver waits. An
attractive hardware modification would be 1o
connect the FDC interrupt line and use inter-
rupts to signal completion. The line should be a
low priority interrupt, and would have 1o pass
through a DUART or a PIT so it could be
enabled by software when required. One advan-
tage of doing this would be to allow a pro-
grammed time out o interrupt the FDC when
accessing a drive with no disk inserted.

The Hard Disk Driver

The Atari ST has its own unique hard disk
controllers. A driver could have been written to
support the Wester Digital controller card that
the PT68K-2 uses, but the simplest adaptation
was to defer this until later. Consequently, the
file *ptwini.c’ is only a dummy hard disk driver,
based on the Atari version.

68 Micro Joumal

June/July ‘89

21

The Printer Driver

Changes to the printer driver were mostly due to
differences in the hardware. The Atari ST uses a
parallel port in the 68901 MFP for a printer port.
The PT68K-2 has a printer port on the IBM
clone monochrome video card, but it is not
usable because it has nointerrupt line. However,
the parallel port in the 68230 PIT is suitable.
Interrupt handling s a bit ricky because the PIT
will interrupt whenever the port output buffer is
empty. In the file ‘ptprint.c’, the driver initial-
izes PIT port A for pulsed handshake with inter-
rupts disabled. The driver then only enables the
interrupt when output is in progress and more
characters remain to be output. This driver has
not been tested, but will likely work.

Memory Size Determination

In the file ‘mm/main.c", the Atari ST version of
Minix reads a TOS variable to determine the
memory size. The PT68K-2 version simply
assumes that one megabyte of RAM is present.
Minix would work with 512 K of RAM, so this
could be changed to do a memory test of some
sort.

Generic Kernel Files

There were many files under the ‘h’, ‘mm’, ‘fs’,
and 'kemel" directories that contained code that
is only compiled when the symbol ‘ ATARI_ST*
is defined. These were all enhanced to produce
the PT68K2 version when the symbol ‘PT68K"
is defined. In many cases, only the symbol was
changed, as the Atari code was also appropriate
for the PT68K-2.

THE BOOT BLOCK FOR THE

! Boot block for the PT68K -2, complete with low level disk i/o

! for the WD1772. Expects an 80-track single-sided disk in drive 0.

.sect .text
sect rom
.sect .data
.sect .bss
sect text
start:
bra boot 1000: jump to loader
ascii “MINIX* 1 002: 6 byte identification
datal 00,0 ! 008: volume serial
datal 02 100B: 512 bytes/sector (low byte first)
datal 2 100D: 2 sectors/cluster
datal 1,0 1 00E: reserved sector (low byte first)
datal 2 1010: number of FATS
datal 1120 1011 number of dirs (low byte first)
datal 2082 1013: 720 sectors (low byte first)
datal 248 1015: media descriptor (80 track SS)
datal 5,0 1016 sectors/FAT (low byte first)
datal 9,0 ! ms sectors/track (low byte first)
.datal 1,0 wmber of sides (low byte first)
datal 0,0 ' mc hidden sectors (low byte first)
! offsets in this boot block:
ic =502

fsckt =510

Idaddr = 0x040000

1 disk controller registers
comreg = OXFEO101
stareg = comreg

trkreg = 0xFE0103
secreg = 0xFE0105
datreg = OxFE0107
dlatch = 0xFE00CI

boot:
ETeK2 move.w #0x0001,d6 ! start with cyl 0, sec 1
2 inix simpl ists of move.w start+nsect(pc),d4
:}’;m’ﬂ“ ,L": yﬁ':“s’;:;""pg,;”‘:';f:y”u; move.l #daddr,a3 ! load address in memory
kernel image in consecutive sectors. It is con- @
ventially on a single-sided diskette. The task of "™ e
the boot loader is to load the kemel image into W !
memory and start execution. The Atari ST ver- :“1 By
sion of Minix used a BIOS call o do the load. b: b:
For the PT68K-2, the boot block requires rou- % tboot
tines to drive the WD 1772 floppy disk control- ™" ; W
ler for ‘restore’, ‘seek’, and ‘read sector’ opera- l“ “:’V{ P, ’l
tions. This code fits quite nicely into the 512- o ‘:’g“)"
byte sector, leaving room for some variables j‘;d'] :Qm 5
required by Minix. The file ‘bootblok.s" is in- o130 03014
cluded here as ‘Listing 1'. To begin the boot, the idbero .
Humbug *fd’ command loads the first sector divs #0d0 ! jump to copy routine in super state
into memory and jumps to the first location.
Fortunately, Humbug has no problem loading a :
512-byte sector, and the rest is done by the boot kit ":0_’;)2700'“
Toader and the Minix disk driver. move.l #8, -
move.l #ldaddr+0x208,a1 ! start address of minix
2 Junelduly ‘89 68 Micro Joumal

move.l #0x400,d0
p2: movel (al}+,(a0)+
empl 20,0
bne cp2
add] #0x200,40 ! skip tos variables
add] #0x200,a1

el d0
move.w start+nsect(pe).d0
asll #8d0 | multiply
asl] #1,d0 ! with 512
cp3: movell (al)+(a0)+
cmp.] a0,
bne cp3
move.l Idaddr+0x204,40
jmp (a0) ! minix boot adres
dread:
move.b #0x20dlatch !side 0, dd, drive 0
bra dr2 Igoto restore
drl:
bst stead lread sector
dr3 luntil successful
addw #1,d3 tincr error count
cmpw #1043 tuntil oo many errors
bl drl tloop
dr2:
moveb #01,comreg !restore
bsr wnbusy !wait for completion
crw d3 no errors now
bra drl tloop
dr3:
addw #5123 liner load addr
add.b #1,d6 lincr sector
cmpb #9,d6
ble drd 1if past cyl
cirb d6 reset

sector
add.w #0x0101,d6 !calc nextcyl
drd:

subw #1.d4 Idecr count
bgt drl tuntil all done
s frewm

sread:
movel 23,22 !—>place for data
move.w d6,d7 Iget next track sector
moveb d7,secreg !give sector to fde
astw #8,d7 Iget track

cmpb tkregd7 i different track

moveb d7datreg Igive track to fdc
moveb #0x11,comreg !seck

FOR THOSE WHO

s
moveb (al)d0 lcheck status
bist #1,d0 q
bne 3
bist #0,d0 tbusy?
bne s
bsr wnbusy Iwait for completion
undb #0x1C,d0 Imask errors
Irewrn
si3:
move.b (a0), (a» Igeta byte
bra sr2 loop
wait:
crb d7
wal:
subb #1,d7
bne wal
ns
wnbusy:
bt wait
move.b stareg,d0 !get status
bist #0,d0 thusy?
bne wnbusy oo

Ireturn with status

REQUIREMENTS FOR PT68K-2 MINIX

To run Minix on a PT68K-2, you need one megabyte of RAM, an IBM
clone keyboard and monochrome display card, and at least one 80-track
double-sided 3.5" floppy disk drive. It's not possible to use a terminal as
the console because neither the Atari version nor the PT68K-2 version
includes a serial port driver. You also, of course, need the Atari version of
Minix, which comes with nine 3.5" diskettes and a 62-page manual. All
diskettes except the ‘boot” and ‘tos’ diskettes are usable on the PT68K-2.

RESULTS

Minix runs beautifully on the PT68K-2 - in some ways, better than on the.
Auari ST. It does, however, have limitations, and certain enhancements
will likely require hardware modifications to the PT68K-2. It definitely
feels like Unix. It's very solid. There are a few bugs, many of them
reported on USENET, but just about everything works well, and works as
expected. Having the source code for the kernel and the commands is a
great advantage. When bugs are reported, and paiches posted, it's very
easy to apply updates and build a new binary. The emacs-inspired screen
editor and the C-compiler work very nicely. Finally, because Minix is
compatible with Unix, there are all those public-domain Unix source
programs available, most of which will run on Minix with litle or no
modification. A programmer will feel right at home in this environment,

bst wnbusy !wait for completion
sl
lea datreg,s0 >data reg
lea staregal —>statusreg
move.b #0x84.comreg !read
bsr wait
68 Micro Journal

June/July ‘89 2

